CUPRINS

CONTENTS

G. PANAKHYD, U. KOTYASH, M. YARMOLUK, D. MIZERNYK, Ya. MASHCHAK
Improvement effect on the productivity of degraded grasslands .. 3

Vasile PLĂMADEALĂ, Alexandru RUSU, Ludmila BULAT
Nāmulor odogenesc din geotrupele – opportunități de alorificare .. 9

Maria DUCA, Tatiana Sestacova, Angela PORT, Alona CUCEREAU, Ion GISCĂ Olesea TABĂRA
Screening-ul germoplasmei de floarea-soarelui la rugini ... 15

Nina FRUNZE
Ecological indices of community structure and diversity of edaphic amino acids 20

VICTOR BURDUJAN, Mihail RURAC, Angela MELNIC
Productivity and quality of the winter barley grains in a multifactorial experiment 27

V. KALITKA, T. KRAVCHENKO
The pigmen complex and productivity of barley depending on the forrenerun plant and effect of the growth regulator AM ... 32

Nicolaie BUIOREANU, Ion HAREA, Nina BEJAN, Ludmila GAVICU
Influence of seedlings of Pitagmon on ripening processes of maturare la fructele de măr prin pe durata perioadei posmaturi ... 38

IOANA ZAVADSKAYA, Angelina KOVTUN
Dynamics of the main biochemical compounds of potato tubers during the storage 42

E. ШMATKOVSKAYA
Grapevine wood diseases in the agrocenoses of vineyards situated in the Northern Black Sea region and special features of their development 46

Mihail LES
Natural regeneration of Pluviorus ostreatus in kучных насаждений на биотопах Украины... 51

Irina BANDURA, Elena MIRONYCHEVA, Lyudmila KУРЧЕВА
The selection of Pluviorus polyrnorum (Fr.) Quel strains resistant to high temperatures of cultivation ... 56

I. NEIKO, Ю. ЕЛИСАВЕНОК, Л. СМЯШНЮК
Assessing the productivity and breeding structure of oak under changing climatic conditions taking as example the geographical cultures .. 60

Oleg OCHVARUK
Bean productivity indices depending on the variety and seeding rate under the western forest-steppe conditions of Ukraine ... 66

Grigore MARIAN, Alexandru MUNTEAN, Andrei GUDIMA, Victor TITEI, Andrei PAVLENCIO
Comparative analysis of biomases obtained from energy crops .. 70

Iulia CORMAN, Dumitru HARU, Roman HARU
Economic-mathematical modeling of feed sizing and location of the grapevine assortment in the agricultural farms situated in the Southern wine growing region 76

Ruslan ANTOCI, Nicolae STARCUC
Microfarma of cattle, sheep and pig carcasses and its sensitivity to some antibiotics 82

Mihail MOROZ
Effect of the remedy Apiphytostimulin on the activity of serum transaminases in sheep 88

Eugen VOINITCHI
The effect of organic acids administered in feed on the growth performance and blood indices of broiler chickens ... 93

I. BALAN, G. BORONCIUC, N. ROSCA, I. MEREUTĂ, V. BUZAN, I. CAZACOV, M. BUCARCIUC
Impactul acțiunii antioxidanțelor stătoare asupra stării morf-funcționale a spermatozoidelor de șoaptă la crocoatervană ... 98

В. РЕШЕТОВ, А. ДЕНКИН, В. АГАФОНОВ, М. СОРОКИН, V. LEMESHEVSKYI
Biosynthesis of the cow’s milk components and its dependence on the metabolite-precursors spectrum .. 103

Ivan KUTSYNYAK
Morphological composition of the male meat of wild boar, red deer and roe deer and some domestic animals ... 112

Tatiana PODPASLANA, Olga MARYJKINA
The influence of rumination processes on the milk productivity of various cow breeds ... 115

Liliana CIMPONES, Cornel COSER
Assessing the potential of Moldova’s agri-food products in the context of the EU neighbourhood ... 120

Elena TIMOFTI, Daniela POPA
Trends of economic efficiency of field vegetable production in the agricultural enterprises of the Republic of Moldova ... 127

Grigore BALTAG, Elena BARANOV
Profitability of raising pigs for meat in the Republic of Moldova: peculiarities, achievements and problems ... 133
IMPROVEMENT EFFECT ON THE PRODUCTIVITY OF DEGRADED GRASSLANDS

G. PANAKHYD, U. KOTYASH, M. YARMOLUK, D. MIZERNYK, Ya. MASHCHAK
Institute of Agriculture of Carpathian region of the National Academy of Agrarian Sciences of Ukraine

Abstract: Following the breakup of the old USSR there has been a large-scale decline in production and increased land abandonment in Ukraine. In the long term, bringing this land into the sustainable agricultural production represents an opportunity to address the increased demand for global food production that will be needed in the forthcoming years. Any land improvement needs to be based on the scientific knowledge of best outcomes. The outcomes of our studies have resulted in different recommendations on the methods of degraded grasslands improvement. Three experiments were carried out in order to measure the effects of different improvement methods on degraded meadows situated in the lowland Ukraine. Only a very limited number of improvements, including the surface improvement by fertilizers and radical improvement by the seeding of the grass-legume mixtures are considered suitable for lowland. Detailed comparison of surface improvement using the 180° turning capacity plough and no-till technology on equally degraded meadows situated in the lowland highlighted the advantages of the no-till technology in the annual DM production. Significant differences in the dry-matter yield supported the hypothesis that no-till farming increased the forage resources and solved the equation of the highest possible conversion of the feeding stuff into herbage under minimal costs.

Keywords: Grasslands; Fertilizer; Legume mixtures; Yield

INTRODUCTION

Grasslands play an important role in providing hay and pasture based forage for the livestock. The contribution of grasslands to the utility of multifunctional livestock systems has been recently recognized (Hopkins, A., Holz, B. 2006). With proper variety selection, favourable irrigation, fertility and harvest or grazing management, there have been obtained high yields of about 8 t ha⁻¹ and even more. The improvement of degraded grassland is the key to successful forage production. The matters of finding the most suitable ways to improve the arable land or set-aside grassland are examined by many research institutions in Ukraine as well as abroad.

A lot of research findings suggest two fundamental methods of land improvement: surface cultivation using fertilizers and radical improvement by seeding the grass-legume mixtures. The reports from specialized literature suggest a range of different amounts of N fertilizer application resulting in the maximal DM yield of old grasslands (Samuil, C. 2010). One of the ways contributing to the conservation of soil’s organic matter is to use a 180° turning capacity plough, when the roots and plant residues have important positive after-effect on the improvement of soil fertility and also on the following yields. The nutrients are better fixed in the soil when using a 180° turning capacity plough and this tillage provides an increase of nitrogen by 48–114 kg ha in the soil. The utilization factor of nitrogen from root and plant residues assimilates to the manure (Lyhochwor, V.V. 2002). Prof. Montgomery also estimated that each dollar invested in soil conservation would save for the society more than $5 (Montgomery D., 2007). No-till farming typically provides greater soil moisture retention and a reduction of soil erosion when compared with conventional seeding methods and, consequently, can hasten or improve its quality. Furthermore, the overseeding of legumes has the potential to increase the annual herbage production and to improve seasonal distribution of yield (Bartholomew, P.W. et al., 2011, Monacu, 2009).

These researches allow to estimate the biological potential of long-lived grasslands using differentiated fertilization systems and optimal stage of cutting; to appreciate the effectiveness of using the 180° turning capacity plough; to determine the expediency of using fertilizers, inoculation, growth stimulators and micronutrients under different improvement systems. There is currently little information available on the optimal methods of degraded grasslands improvement in the situations when the forage yield is very important. The objective of the present work was to select the best method of degraded meadows improvement in order to increase fodder production and conversion of feedstuff into herbage under minimal costs. We hypothesized that the no-till technology would increase the DM yield of degraded
grasses more than surface cultivation and seeding. In order to test this hypothesis, we used the surface cultivation, the seeding using a 180⁰ turning capacity plough, the no-till technology and also the control variant.

MATERIAL AND METHODS

The experiments were conducted in two similar periods of time. The surface improvement by applying nitrogen fertilizer and radical improvement involving the use of a 180⁰ turning capacity plough were conducted in the consecutive years 2006 (year 1), 2007 (year 2) and 2008 (year 3) on the stationary experimental field of the Institute of Agriculture in the Carpathian region of the National Academy of Agrarian Sciences of Ukraine (IACR NAAS) (Obroshyno 49°49′ N 24°00′ E, altitude 280–300 m). This permanent experimental field was established in 1974 on the dark grey podsolized sandy loam soils. The research including the no-tillage technology was conducted in the consecutive years 2010 (year 1), 2011 (year 2) and 2012 (year 3) on the permanent grasslands of IACR NAAS (Lishnya, 49°21′ N 23°30′ E, altitude 280–300 m).

The local climate is semi-continental. It has been formed by the Atlantic Ocean (a lot of precipitations and rapidly changing temperatures) and by the continental atmospheric mass. The temperature during the vegetative season was above the norm by 5.7°C in 2006, by 19.0°C in 2007, by 19.5°C in 2008, by 8.6°C in 2010, by 4.6°C in 2011, and by 12.2°C in 2012. The analysis of the monthly temperature distribution had shown a temperature below the norm only in October and September. It promoted a good regrowth of the aftergrasses.

In 2006, the stationary perennial experiment was improved by the three methods. The first one (surface) included the complete mineral fertilizer application using different amounts of nitrogen distribution for each cutting. Unfertilized control (UF) variant and phosphorus-potassium (PK) background variant were defoliated twice and the variants with nitrogen application - three times. In early spring, all the variants, except the control one, were fertilized using the mineral fertilizer according to scheme of experiment (Tab. 1).

Table 1. Experiment’s scheme of surface cultivation

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>1st cycle</th>
<th>2nd cycle</th>
<th>3rd cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF</td>
<td>emergence of efflorescence</td>
<td>in 50–55 days</td>
<td></td>
</tr>
<tr>
<td>PK</td>
<td>emergence of efflorescence</td>
<td>in 50–55 days</td>
<td></td>
</tr>
<tr>
<td>PK + Nud</td>
<td>Elongation</td>
<td>in 40–45 days</td>
<td>in 40–45 days</td>
</tr>
<tr>
<td>PK + Nuud</td>
<td>Elongation</td>
<td>in 40–45 days</td>
<td>in 40–45 days</td>
</tr>
<tr>
<td>PK + Nuud</td>
<td>emergence of efflorescence</td>
<td>in 40–45 days</td>
<td>in 40–45 days</td>
</tr>
<tr>
<td>PK + Nuud</td>
<td>Efflorescence</td>
<td>in 30–35 days</td>
<td>in 30–35 days</td>
</tr>
</tbody>
</table>

UF – unfertilized control; PK include 60 kg ha⁻¹ P and 90 kg ha⁻¹ K; Nud – uniform distribution per 40 kg ha⁻¹ N for each cutting, Nuud – ununiformed distribution per zero-N treatment for the first cycle, per 40 kg ha⁻¹ N for the second cycle and per 80 kg ha⁻¹ N for the third cycle.

Radical improvement was conducted using the 180⁰ turning capacity plough. The roots and plant residues, which have been embedded in the soil by ploughing, were mineralized. Therefore the nutrients could be taken from the soil by the next crops. The amount of roots and plant residues was defined before the modernization of the experiment. The required quantity of nitrogen, which is necessary to obtain the planned yield, was computed using the balance calculation method (Lyhochwor, 2002). At the same time we took into consideration the soil nitrogen, the elements necessary to build a unit of grassland yield and the utilization rate of nitrogen from the soil. These results allowed asserting that the application of nitrogen fertilizer was not reasonable when using a 180⁰ turning capacity plough. Therefore the nitrogen fertilizer was excluded from the research technology.

The seeding within the new experiment was done using a mixture of alsike clover (Trifolium hybridum L.), bird’s foot trefoil (Lotus corniculatus L.), meadow fescue (Festuca pratensis L.), Timothy (Phleum pratense L.) and bromegrass (Bromus inermis Leyss). The experiment included the control variant without fertilizer, phosphorus-potassium fertilizer (PK), PK + inoculation, PK +
growth stimulator, PK + inoculation + growth stimulator, PK + inoculation + micronutrients. The lime (3 t ha\(^{-1}\)) was applied before the main tillage.

The third experiment was conducted on the degraded permanent grassland by direct overseeding of perennial legumes and grasses on unelaborated turf (no-till). The Great Plains drill 1006 NT, the legume mixture (red clover \((Trifolium pratense\) L.), the alsike clover \((Trifolium hybridum\) L.) and the bird’s foot trefoil \((Lotus corniculatus\) L.) were used for seeding. This study included the control variant without drilling and without fertilizer, another control variant without fertilizer but with drilling, drilling + PK, drilling + PK + inoculation, drilling + PK + growth stimulator, drilling + PK + inoculation + growth stimulator, drilling + NPK + inoculation + growth stimulator. At each sampling date, for each grasslands and each subplot the sample kept from the dry matter (DM) yield measurements of the fresh harvested biomass was weighed and dried at 105°C in order to determine the dry matter (DM) content comparing the difference between the fresh and dry weight. DM yield of each sampling area was calculated from the first weight of the sample, the DM content and the area that was cut (t ha\(^{-1}\) DM). The increase obtained as a result of using radical improvement on the newly-established grassland was calculated in relation to the control variant of surface improvement without fertilizer, because, from an agro-ecological viewpoint, unfertilized permanent grasslands characterize the natural fertility of meadow (Yarmolyuk, 2007).

RESULTS AND DISCUSSIONS

The surface cultivation. DM yield of the long-lived grassland significantly depends on the distribution of nitrogen fertilizer and stage of cutting as it is shown in Table 2. DM yield for the control variant (without fertilizer) was on the average 2.35 t ha\(^{-1}\) during three years. This is significantly less than for the fertilized variants. The application of PK increased the total DM yield by only 23% (Tab. 2). On the contrary, the application of 120 kg ha\(^{-1}\) N increased the DM yield by 193-232% compared with the unfertilized control variant.

Table 2. Dry matter yield (t ha\(^{-1}\) DM) of permanent grasslands depending on the fertilizer and stage of cutting

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>Stage of cutting</th>
<th>1(^{st})</th>
<th>2(^{nd})</th>
<th>3(^{rd})</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF</td>
<td>A</td>
<td>1.49</td>
<td>2.05</td>
<td>3.5</td>
<td>2.35</td>
</tr>
<tr>
<td>PK</td>
<td>A</td>
<td>1.92</td>
<td>2.60</td>
<td>4.1</td>
<td>2.88</td>
</tr>
<tr>
<td>PK + Nud</td>
<td>B</td>
<td>7.59</td>
<td>6.70</td>
<td>9.2</td>
<td>7.82</td>
</tr>
<tr>
<td>PK + Nuud</td>
<td>B</td>
<td>6.47</td>
<td>5.25</td>
<td>9.0</td>
<td>6.90</td>
</tr>
<tr>
<td>PK + Nuud</td>
<td>C</td>
<td>5.4</td>
<td>6.01</td>
<td>9.5</td>
<td>6.98</td>
</tr>
<tr>
<td>PK + Nuud</td>
<td>D</td>
<td>5.76</td>
<td>6.72</td>
<td>9.1</td>
<td>7.2</td>
</tr>
<tr>
<td>LSD 5%</td>
<td></td>
<td>0.29</td>
<td>0.71</td>
<td>0.43</td>
<td>0.32</td>
</tr>
</tbody>
</table>

UF – unfertilized control; PK include 60 kg ha\(^{-1}\) P and 90 kg ha\(^{-1}\) K; Nud – uniform distribution per 40 kg ha\(^{-1}\) N for each cutting, Nuud – ununiformed distribution per zero-N treatment for the first cycle, per 40 kg ha\(^{-1}\) N for the second cycle and per 80 kg ha\(^{-1}\) N for the third cycle. a – first cutting at the stage of efflorescence emergence, next in 50–55 days, b – the first cutting at the stage of elongation, next every 40–45 days, c – the first cutting at the stage of efflorescence emergence, next every 40–45 days, d – the first cutting at the stage of efflorescence next every 30–35 days

DM yield was the highest in the case of uniform distribution (40 kg ha\(^{-1}\) N per each cutting), in the first cycle of cutting in stage of elongation. Total DM yield of this variant was 7.82 t ha\(^{-1}\) DM. Cutting at these stages without early spring N treatment led to DM yield decrease by 6.90 t ha\(^{-1}\) DM. A low productivity was obtained as a result of natural fertility and phosphorus-potassium fertilizer application, but the nitrogen fertilizer provided the main yield. The increase when using N treatment was within 193–232%, and it was the highest for even distribution of nitrogen where 1 kg of N provided 41 kg of DM. If N fertilizer is not applied early in spring it causes a reduction of 193%. There is a well-defined dependence between N-treatment and the date of cutting: in each
subsequent stage the increment from N fertilizer increases. The increase from 1 kg of N was 29 kg of DM and 33 kg of DM for the first cutting at the stage of elongation and the first cutting at the stage of efflorescence respectively.

DM yield of long-lived grassland, which was improved by surface cultivation, increased by 23% as a result of phosphorus-potassium fertilizer application, 60 kg ha\(^{-1}\) P and 90 kg ha\(^{-1}\) K. In 2007, DM yield of unfertilized control variant and PK variant was higher than in 2006 by 35–37%. This increase in DM yield was due to the natural fertility of old grasslands, since these soils were rich in organic matter, which is one of the most important sources of nutrients’ renewal (Wrage et al., 2009). Moreover the water-retaining capacity of organic matter is from five to ten times higher compared to the mineral part of the soil (Sozinov, 1993). In 2007, the weather was arid. The application of full mineral fertilization (NPK) increased the DM yield by two-three times compared to the unfertilized control variant. Similar results were obtained by others scientists (Gutmane et al., 2009). DM yield significantly depended on the date of cutting for uniform N fertilizer application and the highest DM yield was 7.20 t ha\(^{-1}\) for the first cutting at the stage of efflorescence.

Therefore, the highest DM yield was 7.82 t ha\(^{-1}\) for long-lived grasslands. Such a yield was supported by full mineral fertilizer (the uniform distribution of N fertilizer) and cutting in the first cycle in the stage of elongation.

The radical improvement. Productivity of the legume-grass species depended on the fertilizer, inoculation and growth stimulator used in the new experiment (Tab. 3).

Table 3. Dry matter yield (t ha\(^{-1}\) DM) of newly-established grasslands depending on the fertilizer, inoculation, growth stimulator and microelements

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>Production years</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1(^{st})</td>
<td>2(^{nd})</td>
</tr>
<tr>
<td>UF</td>
<td>2.0</td>
<td>4.1</td>
</tr>
<tr>
<td>PK</td>
<td>3.5</td>
<td>6.5</td>
</tr>
<tr>
<td>PK + IN</td>
<td>4.9</td>
<td>7.5</td>
</tr>
<tr>
<td>PK + GS</td>
<td>5.3</td>
<td>6.6</td>
</tr>
<tr>
<td>PK + IN + GS</td>
<td>5.8</td>
<td>8.4</td>
</tr>
<tr>
<td>PK + IN + ME</td>
<td>5.4</td>
<td>7.2</td>
</tr>
<tr>
<td>LSD 5%</td>
<td>0.72</td>
<td>0.92</td>
</tr>
</tbody>
</table>

UF – control (unfertilized), PK include 60 kg ha\(^{-1}\) P and 90 kg ha\(^{-1}\) K; IN – inoculation using Rizobofit, GS – spraying using the growth stimulator Gart, ME – treatment using micronutrients

The highest DM yield of legume-grass species (7.03 t ha\(^{-1}\) DM) was obtained for the variant where the phosphorus-potassium fertilizer and growth stimulator Gart were applied; the seeds were inoculated using Rizobofit. Phosphorus-potassium fertilizer application increased the yield productivity by 43%, while the application of only one of the biopreparations promoted the rise in yield by 76–82%: DM was 5.82 t ha\(^{-1}\) for inoculation and DM was 6.02 t ha\(^{-1}\) for spraying with growth stimulator. Averaged over three production years, there was 3.31 t ha\(^{-1}\) DM yield for unfertilized control variant of the newly-established grasslands, which is higher by 0.96 t ha\(^{-1}\) DM than of the unfertilized control variant of long-lived grasslands. Therefore, the radical grassland improvement that included the sowing of legume-grass mixtures and the use of the 180\(^{th}\) turning capacity plough recorded an increase of DM by 41%. The used biopreparation promoted an increase of DM yield by 11–19%. Spraying by growth stimulator Gart provided an increase of DM yield by 11–19%. The application of lime and phosphorus-potassium fertilizer on the newly-established grassland resulted in an increase of 43% that is by 20% higher than in the long-lived grasslands. The difference can be explained by the presence of the legume and grass mixture, which can increase the productivity by 1.3–2 times without applying the nitrogen fertilizer (Panakhyd, 2008). The inoculation also increased the DM yield by 11% as a result of the symbiotic activity of legumes. They are fixing the atmospheric nitrogen and improving the activity of the natural nitrogen-fixing bacteria.

The highest effect of the biopreparations was obtained when they were applied together. The increase of DM yield was of 19.0% and 16.1% when inoculation was applied together with the growth
stimulator and with micronutrients, respectively. A small increase was obtained as a result of using microelements (5%) and it was caused by the high concentration of soil organic matter. Thus, the 41% increase of the DM yield of the newly-established legume-grass grasslands was obtained due to the establishment of new grasslands on the long-lived ones.

The no-till technology. On average, there was obtained a yield of 2.8 t ha⁻¹ DM over three productivity years under no-till technology in the absolute control variant (without overseeding and fertilizer). DM yield was higher by 4.7 t ha⁻¹ than in the absolute control variant when overseeding the legume species in the degraded grasslands. In the period of three years the highest yield was obtained in the variant where the legume species were overseeded together with 60 kg ha⁻¹ N, 60 kg ha⁻¹ P, 90 kg ha⁻¹ K, and also the inoculation and growth stimulator were applied. That allowed an increase of the yield by 56% in comparison to the absolute control variant (Tab. 4).

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>Production years</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1ˢᵗ</td>
<td>2ⁿᵈ</td>
</tr>
<tr>
<td>AC</td>
<td>2.7</td>
<td>2.5</td>
</tr>
<tr>
<td>RS</td>
<td>6.0</td>
<td>9.3</td>
</tr>
<tr>
<td>RS + PK</td>
<td>6.6</td>
<td>11.1</td>
</tr>
<tr>
<td>RS + PK + IN</td>
<td>6.9</td>
<td>11.9</td>
</tr>
<tr>
<td>RS + PK + GS</td>
<td>7.1</td>
<td>11.7</td>
</tr>
<tr>
<td>RS + PK + IN + GS</td>
<td>7.3</td>
<td>12.4</td>
</tr>
<tr>
<td>RS + NPK + IN + GS</td>
<td>8.8</td>
<td>12.6</td>
</tr>
<tr>
<td>LSD 5%</td>
<td>0.43</td>
<td>0.70</td>
</tr>
</tbody>
</table>

AC – absolutely control variant without reseeding and fertilizer; RS – reseeding of legume species; PK includes 60 kg ha⁻¹ P and 90 kg ha⁻¹ K, IN – inoculation by Rizotorfin, GS – spraying with the growth stimulator polymicosobacteryn; NPK consists of 60 kg ha⁻¹ N, 60 kg ha⁻¹ P and 90 kg ha⁻¹ K

The application of phosphorus-potassium fertilizer over three years increased the DM yield up to 8.3 t ha⁻¹ on average. The use of inoculants provided an increase of DM yield by 1.8 t ha⁻¹, and the use of spraying with the growth stimulator increased the DM by 1.9 t ha⁻¹. The combination of these both preparations increased the DM yield by 37% in comparison with the unfertilized control variant. The highest yield was obtained when using the combination of all these preparations with 60 kg ha⁻¹ N.

The highest yield values were obtained as a result of the legume species overseeding (63%). The increase due to the use of phosphorus-potassium fertilizers was only 10%. As a result of using the inoculation and growth stimulator the recorded percentage increases were 11% and 12%, respectively. The combination of these both preparations provided 19% of the yield increase, and the application of N provided an increase of 12%. The yield of the grasslands cultivated with legume and grass species is due, essentially, to the presence of phosphorus-potassium fertilizers (Aloush et al., 2000; Spehlen et al., 2002). However, in our research, PK fertilizers promoted an increase of DM only by 10%. This low effect resulted from the high content of organic matter that includes a lot of phosphorus, potassium and microorganisms (Besugly, 2009). Nitrogen fertilizer was applied in each cycle by 30 kg ha⁻¹ N. It did not worsen the botanical composition of grassland and did not have a negative impact on the root’s symbiotic activity, therefore the increase was of 12% as a result of the N-treatment.

Considering each improvement measure separately we can conclude that the highest values of yield increase were obtained as a result of the legume species overseeding. These high rates are due to the biological characteristics of the legume and grass species, as they can provide a high yield even without using a fertilizer due to their root system, which can assimilate fertility elements from deep soil layers.
CONCLUSIONS

1. The highest yield increase of the long-lived degraded grasslands was provided by the use of nitrogen fertilizers. The highest efficiency was observed when applying even nitrogen distribution (1 kg of active ingredient of nitrogen provides 41 kg DM).

2. The yield increased by 41% in the newly-established grassland due to radical improvements which include the use of a 180° turning capacity plough and sowing of legume and grass mixtures. The increases are of 11% and 13% as a result of using the inoculation and growth stimulator, respectively.

3. The overseeding of perennial legume and grass species using the no-till technology gives an increase in yield of 63%. Also, there is an increase of 11%, as a result of using the inoculation, 12% as a result of using the growth stimulator and 12% as a result of using nitrogen only.

4. The comparison of surface cultivation, radical improvement and no-till technology demonstrated that the highest DM yield is provided by the legume-grass overseeding using the no-till technology.

REFERENCES

Data prezentării articolului: 05.07.2014
Data acceptării articolului: 10.10.2014
NĂMOLUL ORĂȘENESC DIN GEOTUBURI – OPORTUNITĂȚI DE VALORIFICARE ÎN CALITATE DE FERTILIZANT

Văsile PLĂMĂDEALĂ, Alexandru RUSU, Ludmila BULAT
Institutul de Pedologie, Agrochimie și Protecție a Solului „Nicolae Dino”, Republica Moldova

Abstract. This paper describes the advantages of geotube dewatering technology of municipal sewage sludge in comparison with traditional technology on air drying beds. When using geotube technology, dehydration process occurs faster due to reagents that provide clogging sludge. Applying the technology of dehydrating the sludge in geotube leads to reducing: the time required for dehydration from 18 months up to one month; the surface of land required for the dehydration from 6.0 to 1.25 ha, and respectively, for storage, from 27.7 to 3.65 ha. The emission of toxic gases into the atmosphere is reduced from 1.4 to 6.2 times. Compared with the traditional technology of air drying beds, the sludge dehydrated in geotubes contains 2 times more carbon and total nitrogen. Total phosphorus content had a slight tendency to decrease, total potassium concentration increases with 1.76 times. One ton of dried sewage sludge stored in geotube and stocked for one year has the humidity of 65% and contains 151 kg of organic matter, 9.0 kg N, 10 kg P₂O₅ and 2.9 kg K₂O. Heavy metal content is below the maximum limits that are allowed by national regulations from 2008. The application of sewage sludge as a fertilizer provided a specific increase of the total yield over the two years of 100.5 kg cereal units per 1 ton of sewage sludge at the dose of 18 t/ha and 45.5 kg cereal units per 1 ton of sewage sludge at the dose of 36 t/ha.

Key words: Sewage sludge; Dehydration technology; Geotubes; Soil; Fertilizer

Rezumat. Lucrarea descrie avantajele tehnologiei de deshidratare a nămolului orășenesc din geotuburi prin comparație cu tehnologia tradițională pe paturi de zvântare. La utilizarea tehnologiei prin geotuburi, procesul de deshidratare se petrece mai rapid datorită reagentelor care asigură încheierea nămolului. Aplicarea tehnologiei de deshidratare a nămolului prin geotuburi favorizează reducerea timpului necesar deshidratării - de la 18 luni până la o lună, a suprafeței terenurilor necesare pentru deshidratare – de la 6,0 la 1,25 ha și, respectiv, a terenurilor pentru depozitare – de la 27,70 la 3,65 ha. Eliminarea gazelor toxice în atmosferă se reduce de 1,4 – 6,2 ori. În comparație cu rezultatele obținute prin tehnologia tradițională pe paturi de zvântare, nămolul deshidratat în geotuburi conține de 2 ori mai mult carbon și azot total. Conținutul fosforului total are o tendință nesemnificativă de micșorare, concentrația potasiului total se mărește de 1,8 ori. O tonă de nămol orășenesc deshidratat în geotuburi și stocat pentru un an cu umiditatea de 65%, conține 151 kg materie organică, 9,0 kg N, 10 kg P₂O₅ și 2,9 kg K₂O, forme totale. Conținutul de metale grele se află sub limitele maxime permise dereglamentației naționale din anul 2008. Aplicarea nămolului orășenesc ca îngrășământ a asigurat un spor specific de recoltă totală pe parcursul a 2 ani de 100,5 kg unități cereale per tonă de nămol la doza de 18 t/ha și 45,5 kg unități cereale per tonă la doza de 36 t/ha.

Cuvinte cheie: Nămol orășenesc; Tehnologie de deshidratare; Geotuburi; Sol; Fertilizare

INTRODUCERE

Societatea pe Acțiuni ”Apă Canal Chișinău” împreună cu specialiștii din Olanda și Polonia au început în anul 2008 testarea procesării nămolului orășenesc prin metoda geotuburilor - saci utilizați pentru deshidratarea nămolului, ca procedeu de lichidare a mirosului neplăcut. Conform comunicatelor de presă a Primăriei municipiului Chișinău procesul de deshidratare a nămolului prin geotuburi se petrece rapid, în 7–20 zile, fiind catalizat de reagenții care asigură încheierea nămolului și eliminarea surplusului de apă.

În luna septembrie a anului 2009 a demarat Proiectul - pilot de deshidratare a nămolului în geotuburi, după care au urmat lucrările prevăzute în cadrul Proiectului de Executare „Geotuburi”. În cadrul proiectului - pilot au fost deshidratate circa 90 mii m³ de nămol brut. În acest sens au fost utilizați 40 de saci de diferite dimensiuni, fiind ocupată o suprafață de doar 1,25 ha de teren. La utilizarea tehnologiei tradiționale, pe paturi de zvântare, ar fi fost nevoie de 6 ha. Nămolul pompat în această perioadă a fost deshidratat în decurs de o lună. Anterior, pentru deshidratare era nevoie de o perioadă de 18 luni.

După deshidratare, nămolul din geotuburi este evacuat la locul depozitării o dată pe an, în perioada rece a anului (lunile decembrie-februarie), când procesele de degajare a mirosului specific și de răspândire a înfecțiilor este minimal. Asemenea metodă de deshidratare a nămolurilor se utilizează și în unele țări din Uniunea Europeană. Doar că în aceste țări metoda geotuburilor nu este utilizată pentru întreprinderi atât
de mari ca stația de epurare din Chișinău. În legătură cu producerea acestei forme de nămol orașenesc a apărut necesitatea studierii lui. Scopul acestei lucrări constă în caracterizarea tehnologică și agrochimică a nămolului orașenesc deshidratat prin metoda geotuburilor și testarea lui în calitate de fertilizant.

MATERIAL ŞI METODĂ

Pentru testarea efectului pe care-l are nămolul orașenesc asupra creșterii plantelor și modificării însușirilor solului s-au fondat experiențe de câmp. S-au experimentat două doze de încorporare a nămolului: 18 t/ha și 36 t/ha, calculate după cantitatea de azot pe care s-a aplicat odată cu aceste doze - 170 kg și 340 kg N/ha. Nămolul folosit în experiență avea următoarea compoziție chimică calculată de la masa umedă: pH – 7,05; umiditate – 46,4%; materie organică – 22,2%; azot total – 0,93%; P₂O₅ total – 1,00%; K₂O total – 0,29%; N-NH₄ – 0,06%; P₂O₅ mobil – 0,15%. Raportul C:N a fost de 12:1. Nămolul a fost aplicat toamna înainte de efectuarea arătării. De efectul direct al nămolului a beneficiat mărirea pentru boabe. În anul doi al experienței s-a cultivat grâu de toamnă. În timpul vegetației s-au efectuat lucrări specifice de erbicidare și combatere a bolilor și dăunătoarelor. Experiențele s-au fondat la Stațiunea Experimentală a IPAPS , „Nicolae Dimo”, situată în comuna Ivanca, raionul Orhei pe cernoziom levigat cu textură luto-argiloasă, conținutul de humus 3,8–4,0%, fosfor mobil 18–20 ppm (metoda Macighin), potasiu schimbabil – 270 ppm, pH 6,7 și aciditate hidrolitică – 26,5 me/kg.

REZULTATE ŞI DISCUŢII

Analizând informația prezentată de furnizorul de apă din municipiul Chișinău, deshidratarea nămolului orașenesc prin metoda geotuburilor se dovedește a fi eficientă (Tab.1).

Tabelul 1. Analiza comparativă a modelelor de deshidratare a nămolului orașenesc într-un ciclu anual la stația de epurare a mun. Chișinău (datele SA ”Apă Canal Chișinău”)

<table>
<thead>
<tr>
<th>Nr. crt.</th>
<th>Indicatorul, unitatea de măsură</th>
<th>Metoda geotuburilor</th>
<th>Metoda paturii de zvântare</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Timpul necesar pentru deshidratare, luni</td>
<td>1,0</td>
<td>18</td>
</tr>
<tr>
<td>2.</td>
<td>Suprafața terenului necesară pentru deshidratare, ha</td>
<td>1,25</td>
<td>6,00</td>
</tr>
<tr>
<td>3.</td>
<td>Teren necesar pentru depozitarea nămolului deshidratat, ha</td>
<td>3,65</td>
<td>27,7</td>
</tr>
<tr>
<td>4.</td>
<td>Eliminarea gazelor toxice în atmosferă de pe suprafață 1 ha pe parcursul unui an, kg: a) Hidrogen sulfizat</td>
<td>85</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3600</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>b) Metan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Utilizarea acestei metode a permis micșorarea suprafeței terenurilor utilizate pentru depozitarea nămolului deshidratat de 7,6 ori, a timpului necesar pentru deshidratare – de 18 ori și a terenului necesar pentru deshidratare – de 4,8 ori. Concomitent cu aceasta, s-a micșorat și eliminarea gazelor toxice în atmosferă de pe unitatea de suprafață într-un an: la metan – de 1,4 ori; la hidrogenul sulfurat – de 6,2 ori. Conform datelor prezentate de Societația pe Acțiuni „Apă Canal Chișinău”, în ultimii doi ani la stația de epurare se acumulează anual 110–115 m³ de nămol deshidratat prin geotuburi, cu umiditatea de 78–82%. Apele de canalizare conțin la intrarea în geotuburi circa 96% umiditate, iar
după 40–45 de zile procentul de umiditate scade până la 78–82%. Evacuarea nămolului deshidratat din geotuburi la depozitul de fermentare se efectuează anual în lunile decembrie-februarie.

Rezultatele analizelor chimice efectuate cu probele de nămol deshidratat și stocat mai mult de un an sunt prezentate în tabelul 2.

Tabelul 2. Compoziția chimică a nămolului orășenesc deshidratat prin metoda geotuburilor la stația de epurare a apelor uzate din mun. Chișinău, raportată la masa cu umiditate naturală

<table>
<thead>
<tr>
<th>Ingredientul analizat și unitatea de măsură</th>
<th>x?</th>
<th>Min</th>
<th>Max</th>
<th>S</th>
<th>V %</th>
<th>Sx</th>
<th>Sx %</th>
<th>Δx (+,-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7,4</td>
<td>7,1</td>
<td>7,8</td>
<td>0,5</td>
<td>6,7</td>
<td>0,35</td>
<td>4,8</td>
<td>1,1</td>
</tr>
<tr>
<td>Umiditate, %</td>
<td>65,1</td>
<td>45,4</td>
<td>81,5</td>
<td>16,4</td>
<td>25,2</td>
<td>8,2</td>
<td>12,6</td>
<td>26,2</td>
</tr>
<tr>
<td>Substanță organică, %</td>
<td>15,1</td>
<td>3,6</td>
<td>21,1</td>
<td>4,2</td>
<td>27,8</td>
<td>2,1</td>
<td>13,9</td>
<td>6,7</td>
</tr>
<tr>
<td>Cenusă, %</td>
<td>19,7</td>
<td>10,1</td>
<td>33,5</td>
<td>13,5</td>
<td>66,8</td>
<td>6,6</td>
<td>33,4</td>
<td>17,9</td>
</tr>
<tr>
<td>Carbon, %</td>
<td>7,6</td>
<td>6,8</td>
<td>10,6</td>
<td>2,1</td>
<td>27,8</td>
<td>1,0</td>
<td>13,9</td>
<td>3,4</td>
</tr>
<tr>
<td>Azot total, %</td>
<td>0,90</td>
<td>0,69</td>
<td>0,96</td>
<td>0,1</td>
<td>11,1</td>
<td>0,05</td>
<td>5,5</td>
<td>0,2</td>
</tr>
<tr>
<td>N-NO₃, ppm</td>
<td>39,0</td>
<td>24,1</td>
<td>64,1</td>
<td>2,12</td>
<td>54,4</td>
<td>1,06</td>
<td>27,2</td>
<td>34,0</td>
</tr>
<tr>
<td>N-NH₄, ppm</td>
<td>63,2</td>
<td>30,2</td>
<td>711</td>
<td>15,1</td>
<td>23,8</td>
<td>6,8</td>
<td>10,7</td>
<td>21,8</td>
</tr>
<tr>
<td>Fosfor total, %</td>
<td>0,99</td>
<td>0,94</td>
<td>1,05</td>
<td>0,05</td>
<td>4,5</td>
<td>0,02</td>
<td>0,002</td>
<td>0,06</td>
</tr>
<tr>
<td>P₂O₅-mobil, ppm</td>
<td>1450</td>
<td>1250</td>
<td>1680</td>
<td>0,12</td>
<td>0,02</td>
<td>0,06</td>
<td>33,3</td>
<td>20</td>
</tr>
<tr>
<td>Potasiu total, %</td>
<td>0,29</td>
<td>0,13</td>
<td>0,38</td>
<td>0,14</td>
<td>38,0</td>
<td>0,04</td>
<td>7,3</td>
<td>0,1</td>
</tr>
<tr>
<td>Calciu total, %</td>
<td>2,07</td>
<td>1,86</td>
<td>2,27</td>
<td>0,19</td>
<td>9,0</td>
<td>0,05</td>
<td>2,4</td>
<td>0,1</td>
</tr>
<tr>
<td>Magnesiu total, %</td>
<td>0,30</td>
<td>0,15</td>
<td>0,52</td>
<td>0,14</td>
<td>45,0</td>
<td>0,04</td>
<td>13,3</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Note: x - valoarea medie aritmetică; min - valoarea minimală întâlnită; max - valoarea maximală întâlnită; S – abaterea standard a mediei; V – coeficientul de variație; Sx – precizia mediei în mărimi absolute; Sx% – precizia relativă a mediei; Ax - intervalul de siguranță a mediei la probabilitatea 95%.

Nămolul studiat se caracterizează printr-o reacție slab alcalină. Valoarea pH-ului variază de la 7,1 până la 7,8, mediu alcătuit din 7,4 unități. Abaterea standard a pH-ului este de 0,5%, iar coeficientul de variație – 6,7%. Umiditatea alcătuiește, în medie, 65,1%, cu o abatere standard de 16,4% și coeficientul de variație 25,2%. Conținutul substanțelor organice la umiditatea naturală a nămolului alcătuiește 15,1%. Abaterea standard a conținutului substanțelor organice este de 4,2%, iar coeficientul de variație – 27,8%. Coeficientul de variație a substanței organice față de cea ușcată constatată de noi alcătuiește în medie 41%. Rezultate asemănătoare au fost obținute de savanți din România și din alte țări (Lixandru, Gh., Filipov, F., 2011).

Compoziția chimică demonstrează că nămolul orășenesc este o sursă importantă de materie organică și de elemente nutritive pentru sol și pentru plantele agricole. Nămolul orășenesc este foarte bogat în azot total, 0,90%, dar mai cu seamă în fosfor – element insuficient pentru 76 la sută din solurile agricole ale republicii (Andrieș, S., 2007). Conținutul fosforului total calculat la masa cu umiditate naturală este de 0,99%, cu o posibilă variație de la 0,94 la 1,05%. Abaterea standard a valorii medii în mărimi absolute este de 0,05%, iar coeficientul de variație – de 4,5%. Nămolurile orășeneste au un conținut foarte scăzut de potasiu și sodiu, aceste elemente fiind eliminate, în cea mai mare parte, odată cu efluentul, de aceea ele nu pot reprezenta o sursă de potasiu pentru îmbogătirea solului cu acest element (Lixandru, Gh., Filipov, F., 2011). Nămolul studiat conține, în medie, 0,29% K₂O raportat la masa cu umiditate naturală. Formele mobile de azot și fosfor alcătuiesc aproximativ 14–17% din conținutul lor total (Tab. 2).

Nămolul orășenesc, în comparație cu alte deșeuri organogene, conține diverse metale grele. Multe dintre acestea (Mn, Zn, Cu, B, Mo) sunt necesare plantelor ca microelemente nutritive. De multe ori, pe solurile cu agricultură intensivă, lipsa acestor microelemente conduce la diminuarea cantitativă și calitativă a recoltelor (Banaru, A. et al. 2003). Din acest punct de vedere, nămolul orășenesc se caracterizează ca un ingărâșământ complex, care include toate elementele biofile.

Conținutul de metale grele din nămolul orășenesc al municipiului Chișinău este mult mai scăzut decât maximele admise de reglementările naționale în vigoare (Măsurile de protecție a solului... 2008) (Tab. 3). Cu toate acestea, metalele nocive pentru organismele vertebrate (Cd și Pb) sunt în cantități minime. De menționat că limitele maxime permise de reglementările naționale din anul 2008 sunt mai
puțin severe decât cele stabilite de Consiliul Comunității Europene prin Directiva 86/278/1988, după cum rezultă din tabelul 3.

Tabelul 3. Conținutul de metale grele din nămolul orașenesc obținut la stația de epurare Chișinău, ppm

<table>
<thead>
<tr>
<th>Proveniența nămolului</th>
<th>Cd</th>
<th>Cu</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
<th>Cr</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paturi de zvântare</td>
<td>-</td>
<td>415</td>
<td>92</td>
<td>53</td>
<td>1120</td>
<td>511</td>
<td>401</td>
</tr>
<tr>
<td>Geotuburi</td>
<td>22</td>
<td>209</td>
<td>115</td>
<td>24</td>
<td>460</td>
<td>43</td>
<td>441</td>
</tr>
<tr>
<td>LMA (CE)</td>
<td>10</td>
<td>1000</td>
<td>300</td>
<td>750</td>
<td>2500</td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td>LMA (RM)</td>
<td>40</td>
<td>1750</td>
<td>400</td>
<td>1200</td>
<td>4000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

LMA (Republica Moldova) – limite maxime admise în Republica Moldova (RM).

Sursa principală de metale grele sunt apele uzate ale întreprinderilor industriale, adică modificărilor, din ultimii 10–15 ani în structura și volumele de producție ale întreprinderilor industriale din municipiul Chișinău s-au micșorat volumele apelor uzate și a scăzut și concentrația metalelor grele. Efectuând o analiză comparativă a tehnologiilor de deshidratare a nămolului orașenesc la stația de epurare a municipiului Chișinău și influența lor asupra compoziției nămolului (Tab. 4) putem menționa că la aplicarea tehnologiei geotuburilor, perioada de deshidratare este mai redusă comparativ cu tehnologia clasică. Conținutul carbonului și azotului total raportat la masa uscată a fost de circa două ori mai mare (21,8–11,4% și 2,58–1,41%). Conținutul fosforului total a avut o tendință de micșorare nesemnificativă – cu circa 10%, de la 3,13 până la 2,84%. Concentrația potasiului total a crescut de 1,8 ori, de la 0,47 până la 0,83%. Raportul carbon:azot este același nivel (8:1) în cazul ambelor tehnologii, ceea ce se încadrează în limitele optime de asigurare a plantelor cu azot.

Tabelul 4. Analiza comparativă a compoziției chimice a nămolului orașenesc de la stația de epurare a municipiului Chișinău

<table>
<thead>
<tr>
<th>Nr. crt.</th>
<th>Ingridentul analizat și unitatea de măsură</th>
<th>Technologia de deshidratare a nămolului</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Geotuburi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umiditatea naturală, %</td>
</tr>
<tr>
<td>1</td>
<td>Umiditatea, %</td>
<td>65,1</td>
</tr>
<tr>
<td>2</td>
<td>Substanță organică,%</td>
<td>15,1</td>
</tr>
<tr>
<td>3</td>
<td>Cenușă, %</td>
<td>19,7</td>
</tr>
<tr>
<td>4</td>
<td>Carbon, %</td>
<td>7,6</td>
</tr>
<tr>
<td>5</td>
<td>Azot total, %</td>
<td>0,90</td>
</tr>
<tr>
<td>6</td>
<td>N-NO₃, ppm</td>
<td>39,0</td>
</tr>
<tr>
<td>7</td>
<td>N-NH₄, ppm</td>
<td>632</td>
</tr>
<tr>
<td>8</td>
<td>Fosfor total, %</td>
<td>0,99</td>
</tr>
<tr>
<td>9</td>
<td>P₂O₅- mobil, ppm</td>
<td>1450</td>
</tr>
<tr>
<td>10</td>
<td>Potasiu total, %</td>
<td>0,29</td>
</tr>
</tbody>
</table>

Nămolurile obținute de la epurarea apelor uzate orașenești se deosebesc esențial de îngrășămintele organice tradiționale nu numai după conținutul total al elementelor nutritive, dar și în privința formelor mobile, ușor accesibile plantelor. Din acest punct de vedere ele se pot diferenția mult cu îngrășămintele industriale și deci pot influența beneficiu asupra plantelor încă din primul an de acțiune (Banaru, A. et al. 2003).

Testările în câmp ale nămolului orașenesc deshidratat prin metoda geotuburilor au demonstrat că în primul an de acțiune nămolul recoltat de măzăre boabe a crescut semnificativ, sporul fiind de 400 kg la doza de 18 t/ha și de 650 kg/ha la dublarea dozei (Tab. 5).

În anul doi de acțiune recoltat grâuului de toamnă a mărit considerabil. La doza de 18 t/ha producția de boabe a fost cu 34% mai înaltă decât la varianta martor, sol nefertilizat. Pe parcelele pe care s-au aplicat câte 36 t/ha de nămol, sporul de recoltă a constituit 22%, adică de 1,5 ori mai puțin decât la varianta tratată cu 18 t/ha. Aceste rezultate, pe langă faptul că solicită cerințele cauzei, ne avertizează privitor la majorarea dozelor de nămol. S-ar putea că acest fenomen să se referă numai la grâu sau culturile semănate în rânduri dese. Sperăm că în următorii ani aceste întrebări vor fi soluționate prin
observații și analize mai aprofundate. Îngrășămintele organice, dar mai ales nămolul orășensesc, solicită cercetări în experiențe multianuale.

Revenind la discutarea rezultatelor obținute, constatăm că recolta totală pentru doi ani la variantele fertilizate cu nămol a constituit 9090 – 9260 kg/ha în comparație cu 7450 t/ha la varianța nefertilizată. Sporul specific de recoltă de la 1 tonă de nămol a fost de 100,5 kg unități cereale în cazul dozei 18 t/ha și 45,5 kg/t la doza de 36 t/ha. Aceasta ne face să credem că dozele mici de 18–20 t/ha nămol, vor fi mai eficiente atât din punct de vedere agronomic, după cum rezultă din experiențe, cât și în plan economic, întrucât vor fi utilizate cantității mai mici de nămol pentru unitatea de teren.

Având un conținut relativ inalt de materie organică și de elemente nutritive, nămolul orășensesc a contribuit la îmbunătățirea unor înșușiri fizice, chimice și biologice ale solului. Datele din tabelul 6 reprezintă media determinărilor în probele de sol recoltate în primăvara primului și al doilea an de acțiune a nămolului.

Tabelul 6. Modificarea conținutului materiei organice și al formelor accesibile de fosfor și potasiu din sol sub influența nămolului orășensesc aplicat (media de doi ani, stratul arabil)

<table>
<thead>
<tr>
<th>Varianta experienței</th>
<th>Materie organikă, %</th>
<th>P₂O₅ ppm</th>
<th>K₂O ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continutul</td>
<td>Diferență</td>
<td>Continutul</td>
</tr>
<tr>
<td>Martor</td>
<td>3,90</td>
<td>-</td>
<td>24,5</td>
</tr>
<tr>
<td>Nămol orășensesc, 18 t/ha</td>
<td>4,12</td>
<td>0,22</td>
<td>35,8</td>
</tr>
<tr>
<td>Nămol orășensesc, 36 t/ha</td>
<td>4,25</td>
<td>0,35</td>
<td>43,8</td>
</tr>
</tbody>
</table>

În limita așteptărilor și legăturilor stabilițe s-a manifestat procesul de transformare a materiei organice, încorporate cu nămolul orășensesc. S-a observat o majorare semnificativă, cu 0,22-0,35% de la masa solului, a conținutului de materie organică în stratul arabil la variantele fertilizate. Conținutul de fosfor mobil a crescut, în comparație cu varianța nefertilizată, cu 11–19 ppm, iar cel de potasiu schimbabil – cu 70-80 ppm. Aceste majorări a fosforului și potasiului accesibil pentru plante se datorează nu numai cantităților aplicate de nămol, dar și influenței solubilizarea nămolului asupra rocilor și mineralelor din sol ce conțin fosfor și potasiu. Spre exemplu, la nivelul de 0,29% K₂O total cu 18 t nămol s-a încorporat în stratul arabil 52,2 kg K₂O, ceea ce corespunde mărimii de 22 mg/kg sol (22 ppm). Deci, în total s-a încorporat cu nămolul - 22 ppm K₂O total, dar în solul acestei variante s-a găsit 70 ppm K₂O accesibil. Forma accesibilă a potasiului a depășit mai mult de 1,4 ori (70:50) cantitatea de potasiu total încorporată cu nămolul.

Tabelul 7. Conținutul de metale grele (forme totale) din solul fertilizat cu nămol orășensesc, ppm (stratul arabil)

<table>
<thead>
<tr>
<th>Varianta</th>
<th>Cd</th>
<th>Cu</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
<th>Cr</th>
<th>Mn</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martor</td>
<td>0</td>
<td>14</td>
<td>20</td>
<td>89</td>
<td>32</td>
<td>70</td>
<td>894</td>
<td>0,66</td>
</tr>
<tr>
<td>Nămol orășensesc, 18 t/ha</td>
<td>1,5</td>
<td>18</td>
<td>18</td>
<td>107</td>
<td>38</td>
<td>80</td>
<td>755</td>
<td>0,71</td>
</tr>
<tr>
<td>Nămol orășensesc, 36 t/ha</td>
<td>1,6</td>
<td>18</td>
<td>20</td>
<td>89</td>
<td>37</td>
<td>75</td>
<td>857</td>
<td>0,64</td>
</tr>
<tr>
<td>LMA *</td>
<td>3</td>
<td>140</td>
<td>75</td>
<td>300</td>
<td>300</td>
<td>100</td>
<td>1500</td>
<td>3</td>
</tr>
</tbody>
</table>

LMA * = limitele maxime admise în sol. (HG. MO nr.193-194 din 28.11.2008)
Metalele grele din sol (forme totale) au suportat puține schimbări. În comparație cu varianța nefertilizată se observă o creștere a conținutului de Cd – cu 1,5-1,6 ppm, Cu – cu 4 ppm și Cr – cu 7 ppm (Tab.7), însă concentrația lor nu depășește limitele maxime admise în sol.

CONCLUZII

Stația de epurare a apelor uzate din municipiul Chișinău produce anual 110–115 mii m³ de nămol deshidratat în geotuburi cu umiditatea de 78–82%. După un an de la stocare, umiditatea scade până la circa 65%, ceea ce-l face din punct de vedere tehnologic bun pentru transportare și aplicare ca îngrozământ. Într-o tonă de nămol orășenesc deshidratat în geotuburi și stocat timp de un an se conțin 151 kg de materie organică, 9,0 kg de azot total, 9,9 kg de fosfor total, 2,9 kg de potasiu și 20,7 kg de calciu. Conținutul de metale grele se află sub limitele maxime admisibile. În comparație cu tehnologia clasică, la deshidratarea nămolului prin geotuburi timpul necesar deshidrării se reduce de 18 ori, suprafața terenului de deshidratare – de 4,8 ori, suprafața terenului de stocare – de 7,6 ori și eliminarea gazelor toxice în atmosferă – de 1,4–6,2 ori. Deshidratarea prin geotuburi a majorat de circa două ori conținutul carbonului, azotului și potasiului total și l-a redus pe cel al fosforului total în nămolul orășenesc cu circa 10%.

Aplicarea nămolului orășenesc deshidratat prin geotuburi ca îngrozâmânt, la doza de 18 t/ha, a asigurat în doi ani un spor total de producție de 1810 kg/ha cereale convenționale. La doza de 36 t/ha nămol sporul de recoltă a fost cu 2 la sută mai mic. Sporul specific de recoltă la 1 tonă de nămol aplicată a constituit 100,5 kg și, respectiv, 45,5 kg unități cereale convenționale.

REFERINȚE BIBLIOGRAFICE

Data prezentării articolului: 28.07.2014
Data acceptării articolului: 02.10.2014
SCREENING-UL GERMOPLASMEI DE FLOAREA-SOARELUI LA RUGINĂ

Maria DUCA¹, Tatiana ŞESTACOVA¹, Angela PORT⁵, Aliona CUCEREAȘTÎ, Ion GISCĂ ², Olesea TABĂRĂ³
¹Universitatea Academiei de Științe a Moldovei
²„AMG – Agroselect" SRL

Abstract: A key feature of sunflower commercial hybrids is the resistance to various diseases and pests, which excludes the use of chemical treatments and reduces negative environmental impacts. Rust is a fungal disease caused by Puccinia helianthi leading to significant yield losses. The molecular screening of rust resistance genes offers the possibility of identifying parental forms and hybrids resistant to infection. In this study 42 sunflower genotypes (RF paternal lines, maternal lines with cytoplasmic male sterility (CMS) and F1 commercial hybrids) were evaluated for the presence of the amplicon 950 pb associated with Rf gene, which confer resistance to the rust race 100. Molecular SCAR analysis (Sequence Characterized Amplified Regions) showed that the amplicon was not present at CMS lines indicating that these genotypes do not possess Rf gene. The fragment of 950 bp was found only in 13 genotypes: 10 paternal lines and three local commercial F1 hybrids (Nistru, Doina and Oscar). The data provide useful information to breeders for selecting parental combinations to create hybrids resistant to rust.

Key words: Helianthus annuus; Screening; Molecular marker; Rust; Resistance

Rezumat: O caracteristică esențială a hibrizilor comerciali de floarea-soarelui reprezintă rezistența la diferite boli și dăunjatori, ceea ce exclude utilizarea tratamentelor chimice și diminuăza impactul negativ asupra mediului. Rugina reprezintă o maladie micotică provocată de Puccinia helianthi ce cauzează pierderi semnificative de recoltă. Screening-ul molecular al genelor de rezistență la rugină oferă posibilitatea identificării formelor parentale și hibrizilor rezistenți la infecție. În acest studiu s-au evaluat 42 genotipuri de floarea-soarelui (linii paterne RF, linii materne cu androsterilitate citoplasmatică (ASC) și hibrizi F1, comerciași) pentru a se stabili prezența ampliconului de 950 pb asociat cu gena Rf, ce conferă rezistență la rasa de rugină 100. Analiza SCAR (Sequence Characterized Amplified Regions) a demonstrat lipsa ampliconului de 950 pb la toate liniile materne, ceea ce indică faptul că aceste genotipuri nu posedă gena Rf. Fragmentul de 950 pb a fost identificat doar la 13 genotipuri de floarea-soarelui: 10 linii paterne și 3 hibrizi comerciași autohtoni F1 (Nistru, Doina și Oscar). Datele obținute furnizează informații utile amelioratorilor privind selectarea combinațiilor parentale în crearea hibrizilor rezistenți la rugină.

Cuvinte cheie: Helianthus annuus; Screening; Marker molecular; Rezistență; Rugină

INTRODUCERE

Rugină cauzată de Puccinia helianthi reprezintă una dintre cele mai răspândite patologii ale florii-soarelui (Qi, L.L. et al. 2011b). Pagubele produse variază mult în funcție de condițiile climaterice locale, favorabile dezvoltării bolii (Fick, G.N. 1983; Rashid, K.Y. et al. 2003), de calitatea lucrărilor agrotehnice și de sensibilitatea germoplasmelor hibrizilor comerciași la diferite rase de rugină (Vronskih, M.D. et al. 2007). Cu ajutorul markerilor moleculați a fost cartografiați o serie de gene de rezistență la rugină (R) (Tab.1).

În acest context, drept obiectiv al cercetărilor a fost identificarea prezenței genei \(R_j \) la genotipurile incluse în studiu pentru utilizarea datelor ulterioare în programele de ameliorare și producerea hibrizilor de floarea-soarelui rezistenți la rugină în Republica Moldova.

MATERIAL ȘI METODĂ

Cultivarea și colectarea materialelui. Semințele de floarea-soarelui au fost cultivate în vase de 200 ml pe substrat de nisip. Plantele au fost crescută la temperatura medie de 21°C, cu fotoperioadă de 10–12 ore. Materialul vegetal a fost colectat la etapa de două frunze cotiledonale după 7 zile de cultivare.

Izolarea ADN-ului. Extragerea ADN-ului s-a realizat din material vegetativ proaspăt (trei plantule de floarea-soarelui – probe bulk) cu folosirea setului de reagenți GeneJET Plant Genomic DNA Purification Mini Kit (Thermo Scientific). Purgarea și calitatea probelor de ADN s-a evaluat într-un spectrotometru T60 UV-VIS Spectrophotometer prin estimarea raportului \(A_{260}/A_{280} \) care s-a comparat cu valori cuprinse între 1,8–2,0. Conținutul ADN în probă a variat între 230–800 ng/µl.

Screening-ul molecular. Reacția PCR a fost realizată la amplificatorul GeneAmp® PCR System 9700 (Applied Biosystems) într-un volum total de 15 µl mediu de reacție, care a inclus 50 ng de ADN, 0,25 µM fiecare primer, 200 µM dNTP, 2,5 mM MgCl₂, DreamTaq Green DNA Polymerase (Thermo Scientific) 1U/reacție, soluție tampon.

- Succesiunea primerilor pentru markerul molecular SCAR:
 - sens — CAAAGCCGAGAAAAACAAACTACAC
 - antisens — CAACGGCCGAGATTTCAC (Lawson et al. 1998).
- Programul de amplificare: denaturare – 4 min 95°C urmat de 35 cicluri: 30 s la 95°C, 30 s la 69°C, 1 min la 72°C; elongare finală – 3 min la 72°C.
- Produsei de amplificare au fost vizualizați în gel de agaroză de 1% utilizând soluția tampon TAE (Tris-acetat EDTA) în prezența markerului GeneRuler 100 bp DNA Ladder SM0241 (ThermoScientific).

REZULTATE ȘI DISCUȚII

Screening-ul fenotipic realizat pe câmpurile asociației “AMG–Agroselect” a relevat simptome de infectare a plantelor cu rugină la 31 de genotipuri dintre cele 42 studiate. Infectarea cu rugină s-a manifestat începând cu faza de plantule și până la sfârșitul perioadei de vegetație. Efecte mai pronunțate au fost constatate la nivelul frunzelor și mai puțin pe sepaquele capitului. Frunzele au prezentat numeroase

Tabelul 1. Markerii utilizați pentru identificarea genelor de rezistență la rugină

<table>
<thead>
<tr>
<th>Gena</th>
<th>Locusul</th>
<th>Marker</th>
<th>Autorul, anul</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1)</td>
<td>LG8</td>
<td>SCT0 6990</td>
<td>Lawson, W.R. et al. 1998</td>
</tr>
<tr>
<td>(R_2)</td>
<td>LG 9</td>
<td>ORS333</td>
<td>Lawson, W.R. et al. 1998; 2011</td>
</tr>
<tr>
<td>(R_4)</td>
<td>LG13</td>
<td>ZVG61, ORS581</td>
<td>Qi, L.L. et al. 2011b</td>
</tr>
<tr>
<td>(R_5)</td>
<td>LG 2</td>
<td>ORS630, ORS316</td>
<td>Qi, L.L. et al. 2012a</td>
</tr>
<tr>
<td>(R_{11})</td>
<td>LG13</td>
<td>ORS728</td>
<td>Qi, L.L. et al. 2012b</td>
</tr>
<tr>
<td>(R_{12})</td>
<td>LG 11</td>
<td>CRT84</td>
<td>Gong, L. et al. 2013b</td>
</tr>
<tr>
<td>(R_{13a})</td>
<td>LG13</td>
<td>RG125/6/15, SUN14</td>
<td>Gong, L. et al. 2013a</td>
</tr>
<tr>
<td>(R_{13b})</td>
<td>LG13</td>
<td>RG125/6/15</td>
<td>Baclava, E. et al. 2011</td>
</tr>
</tbody>
</table>

Cultivarea și colectarea materialelui. Semințele de floarea-soarelui au fost cultivate în vase de 200 ml pe substrat de nisip. Plantele au fost crescute la temperatura medie de 21°C, cu fotoperioadă de 10–12 ore. Materialul vegetal a fost colectat la etapa de două frunze cotiledonale după 7 zile de cultivare.\n
Izolarea ADN-ului. Extragerea ADN-ului s-a realizat din material vegetativ proaspăt (trei plantule de floarea-soarelui – probe bulk) cu folosirea setului de reagenți GeneJET Plant Genomic DNA Purification Mini Kit (Thermo Scientific). Purgarea și calitatea probelor de ADN s-a evaluat într-un spectrotometru T60 UV-VIS Spectrophotometer prin estimarea raportului \(A_{260}/A_{280} \) care s-a comparat cu valori cuprinse între 1,8–2,0. Conținutul ADN în probă a variat între 230–800 ng/µl.\n
Screening-ul molecular. Reacția PCR a fost realizată la amplificatorul GeneAmp® PCR System 9700 (Applied Biosystems) într-un volum total de 15 µl mediu de reacție, care a inclus 50 ng de ADN, 0,25 µM fiecare primer, 200 µM dNTP, 2,5 mM MgCl₂, DreamTaq Green DNA Polymerase (Thermo Scientific) 1U/reacție, soluție tampon. Succesiunea primerilor pentru markerul molecular SCAR: sens — CAAAGGGCAGAAAAACAAACTACAC, antisens — CAACGGCCGAGATTTCAC (Lawson et al. 1998). Programul de amplificare: denaturare – 4 min 95°C urmat de 35 cicluri: 30 s la 95°C, 30 s la 69°C, 1 min la 72°C; elongare finală – 3 min la 72°C. Produsei de amplificare au fost vizualizați în gel de agaroză de 1% utilizând soluția tampon TAE (Tris-acetat EDTA) în prezența markerului GeneRuler 100 bp DNA Ladder SM0241 (ThermoScientific).
pustule de uredospori punctiforme sau alungite, cu diametrul de 0,5–2,0 mm, prăfoase, dispersate pe ambele fețe, în special pe cea inferioară. În majoritatea cazurilor (75–80% din plantele infectate), frunzele prezintă pustule izolate, rareori (20–25%) în cazul unui atac mai intens, confluează și ocupă porțiuni mari din suprafața limbului foliar (Fig. 1). S-a stabilit că dezvoltarea activă a ciupercii are loc în luniile iunie-august și este favorizată de temperaturi ridicate și umiditate mai scăzută. Spre toamnă, printre pustulele cu uredospori s-au diferențiat pustule cu teleutospori, asemănătoare ca formă și dispoziție cu cele precedente, dar mai puțin prăfoase și de culoare brun-negricioase.

Simptomele observate sunt similare cu cele descrise de alții autori (Bailey, D.L. 1923; Vronskih, M.D. et al. 2007).

Figura 1. Aspectul exterior al limbului foliar atacat de rugină (câmpul asociat “AMG – Agroselect”)

Studiul molecular privind gena R_f a demonstrat prezența fragmentului de 950 pb asociat cu rezistența doar la 13 genotipuri de floarea-soarelui din cele 42 incluse în cercetare. Amplificaiile, care indică rezistența la rugină asigurată de gena R_f, au fost puși în evidență la 10 linii paterne din 22 studiate (MS-2064C, MS-1924C, MS-1985C, MS-2570C, MS-2555C, MS-2540C, MS-2583C, MS-2400C, MS-2565C, MS-2005C). Aceste genotipuri pot fi recomandate în calitate de surse de gene pentru producerea de hibrizi rezistenți. În cazul celor 12 linii materne cu ASC fragmentul de 950 pb asociat genei R_f nu a fost identificat, ceea ce indică asupra faptului că aceste genotipuri nu posedă gena respectivă și nu manifestă rezistență la rasa 100 de rugină (Fig. 2, Tab. 2).

Figura 2. Screening-ul molecular al liniilor de floarea-soarelui privind prezența genei R_f.

Din 8 hibrizi F_1, incluși în investigație doar trei (Nistru, Doina și Oscar) s-au caracterizat prin prezența în gel a fragmentului asociat cu gena R_f (Fig. 2, Tab. 2). Hibrizii menționați au fost obținuți prin încrucișarea formei paterne MS-2570C, care posedă gena R_f, cu diferite formele materne, care, după cum s-a constatat în datele prezentate mai sus, nu conțin gena de rezistență la rugină.
Tabelul 2. Repartizarea genotipurilor în funcție de prezența sau absența markerilor asociati cu gena de rezistență R_1

<table>
<thead>
<tr>
<th>Genotipuri</th>
<th>Rezistente</th>
<th>Susceptibile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hibrizi F1 (3R/5S)</td>
<td>Nistru, Doina, Oscar</td>
<td>Codru, Dacia, Zimbru, Talmaz, Cezar</td>
</tr>
<tr>
<td>Linii RF (10R/12S)</td>
<td>MS-2064C, MS-1924C, MS-1985C, MS-2570C, MS-2555C, MS-2540C, MS-2583C, MS-2400C, MS-2565C, MS-2005C</td>
<td>MS-2077A, MS-2067A, MS-2091A, MS-1589A, MS-2039A, MS-2098A, MS-2161A, MS-2073A, MS-2185A, MS-2075A, MS-2036A, MS-2026A</td>
</tr>
<tr>
<td>Linii ASC (0R/12S)</td>
<td>MS-2440C, MS-1944C, MS-1950C, MS-2080C, MS-1995C, MS-2275C, MS-3470C, MS-1920C, MS-2203C, MS-2020C, MS-2550C</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13 genotipuri</td>
<td>29 genotipuri</td>
</tr>
</tbody>
</table>

CONCLUZII

În condițiile zonei de Nord a Republicii Moldova (or. Soroca) s-a constatat o dezvoltare tipică a infectării genotipurilor de floarea-soarelui cu rugină. Screening-ul molecular al genei R_1, la genotipurile de floarea-soarelui a demonstrat prezența markerului asociat cu rezistența la rugină a 13 genotipuri, inclusiv trei hibrizi comerciiali autohtoni, din 42 de genotipuri incluse în cercetare. Se recomandă producerea de hibrizi comerciiali utilizând formele RF cu rezistență la rugină pentru a controla în mod eficient răspândirea fitopatogenului în culturile de floarea-soarelui.

REFERINȚE BIBLIOGRAFICE

INTRODUCERE

Numărul total de AA, tradițional considerat ca diversitate specifică, prezintă și cea mai simplă caracteristică a varietății sau componentului mulțimii (Odum, Ú. 1975). Simplă, dar nu și inezipabilă, fiindcă nu se ia în calcul varietatea relativă a speciilor. La determinarea numărului total de AA se aplică indicații Shannon, Simpson ș.a., numiți și "indicii diversității specifice" (Mandel'brot, B. 2002; Margalef, R. 1992; Meggérán, C. 1994; Utteker, R. 1980). Prin urmare, cu toate că aprecierea diversității specifice la prima vedere pare a fi simplă, ce se reduce, în esență, la inventarierea speciilor, totalitatea AA trebuie precăutată nu atât ca rezultanța acțiunii diferitor factori, cât ca raportul componentelor principali ai săi.

Scopul studiului dat îl reprezintă analiza și determinarea diversității speciilor de AA edafici. Sarcinile cercetărilor au fost determinarea indicelui de dominară și de diversitate specifică a AA; analiza parametrilor de structură și de varietate a speciilor; relevarea caracteristicilor distinctive ale solurilor antropice și naturale și rolul lor în formarea AA.

MATERIAL ȘI METODĂ

Ca obiecte de studiu au servit probele de sol a 3 variante de cernoziom carbonatic din asolamentul de cultură furajere, aflate la cea de a doua rotăție, din Stațiunea Experimentală „Biotron” a Academiei de Științe a Moldovei.
Conținutul humusului a variat între 2,30 și 3,10% în variantele studiate: 1 – martor, 2 – cu fond mineral, 3 – cu fond organic. La introducerea îngrășămintelor s-a urmat mențiunea conținutului de NPK din sol, astfel încât variantele fertilizate s-au echivalent. Probele de sol din stratul 0-20 cm au fost prelevate în primăvara anilor 2006-2008. În calitate de martor general a servit solul biocenozei naturale din fața forestieră alăturată, amplasată la circa 100 m.

REZULTATE ȘI DISCUȚII

Masa sumară a biomoleculelor identificate și determinate în hidrolizatele de sol era de 1813-6687 x 10⁻⁴ mg/100 mg (Fig.1). Analiza rezultatelor obținute pentru mărimile absolute, în funcție de valoarea și însemnătatea lor a arătat că fiecare dintre AA, în dependentă de condițiile ecologice ale variantelor

![Figura 1. Masa aminoacizilor din sol, mK/M/100 mg x10⁻⁴ (A) și cota de participare a biomoleculelor individuale în conținutul total de AA, % (B)](image-url)
studiate, era prezentat diferit, cu exceptia acidului γ-aminobutiric, conținutul maxim al AA individuale, fiind înregistrat în solul biocenozei naturale. În solul fertilizat cu substanțe minerale s-a constatat o cantitate mai joasă a 5 AA (aspartic, glutamic, metionine, tirozine și γ-aminobutiric) față de solul martor (Fig. 1 A), iar în cel fertilizat cu substanțe organice – numai metionina era la un nivel mai jos, decât în varianta de sol martor. Formarea sumară a AA a depășea pe cea din solul martor cu 121%, 200% și 369% înregistrate în fondurile mineral, organic și, respectiv, natural. După acest indice solul fondului nefertilizat și ceda biocenozei naturale cu 73%, solul fondului mineral – cu 67%, iar solul fondului organic – cu 46%.

Analizând gradul de participare relativă a biomoleculelor în spectrul comun de AA, s-a observat că raportul cantitativ al reprezentanților individuale se deosebește în măsură mai mică, în comparație cu mărimele absolute (Fig. 1B). La determinarea aportului cantitativ al AA individuale (considerând conținutul lor total pe variante ca 100%) a fost relevată o înrudire mai mare a variantelor după acumularea AA: atât cele mai mici, cât și cele mai înalte mărimi relative au fost înregistrate în toate variantele. În comparație cu analiza masei AA, întâieta care era caracteristică numai solului natural. Mai mult ca atât, în solul fașiei forestiere a fost înregistrată o diversitate maximă a reprezentanților cu cea mai mică cotă a aportului (după alanină, leucină, treonină, arginină și acidul ă-aminobutiric), întrecând variantele arate doar după formarea metioninei și cisteinei.

În solul fondului natural a fost identificată și cea mai mică cotă de AA aspartic și glutamic, tirozină și fenilalanină. Indicele maximal s-a evidențiat numai la valină. În solul fondului nefertilizat a fost constatată cea mai mică cotă parte a glicinei și prolinei și cea mai înaltă a alaninei. Solul variantelor studiate se caracteriza și prin conținut similar al serinei, izoleucinei, histidinei și fenilalaninei. E remarcatabil că, în general, solurile arate depășeau solul biocenozei naturale după acumularea acidului γ-aminobutiric, leucină, treonină și arginină, cedându-îi considerabil după formarea metioninei și treoninei.

Varietatea speciilor în spectrul de AA intrunea 18 reprezentanți: acidul aspartic, glutamic, glicina, prolina, alanina, metionina, serina, valina, izoleucina, lisina, leucina, treonina, histidină, arginina, fenilalanina, cisteina, tirozina și acidul γ-aminobutiric. Conform indicilor Margalef și Menhink, diversitatea speciilor de asemenea era mai mare în solurile arate decât în fondul natural (Fig. 2). Atingând mărimea maxime în solul nefertilizat, solul biocenozei naturale ceda cu 2%, 8% și 15% în primul caz (d₁) și cu 7%, 29% și 48% – în al doilea caz (d₂) fondurilor mineral, organic și, respectiv, natural. Studierea structurii comunităților de AA a relevat participare relativă diferită a biomoleculelor în spectrul comun (măcar câte speciile de AA, constituentele comunităților, se deosebeau esențial după însemnătatea lor).

Indicele de dominare Simpson, înregistrând valori de la 0,0001 până la 0,0289, a arătat indicii de dominare a AA în concordanță cu masa lor. Valori maxime și minime, precum și coefițienții similari de dominare s-au constatat în toate variantele, în comparație cu analiza premergătoare. În general, cele mai mari valori au fost înregistrate în solul nefertilizat (c = 2,1025). În celelalte variante, valorile indicului Simpson au fost apropiate și au constituit câte 48% în fondurile mineral și natural (c = 1,0000 și 1,0056 corespunzător și 50% - în cel organic (c = 1,0404). Dominarea totală a speciilor de AA este mai redusă cu 52% în fondul mineral și natural și cu 50% în cel organic. Indicii de dominare ai biomoleculelor individuale aveau un rol funcțional diferit pe variante.

Conform hierarchiei tradițional existente a speciilor (Odum, Ü. 1975), în baza nivelului de participare în conținutul total, AA pot fi divizați în 3 grupe care, atât după compoziția cantitativă, cât și după cea calitativă, sunt diferiți în fiecare variant de sol. Prima, cea mai mică grupă, a alcătuiesc reprezentanții cu cele mai înalt conținut de masă – speciile dominante sau conducătoare, după care urmează grupa subdominante. Celelalte specii de AA se consideră secundare, printre ele întâiindu-se, de asemenea, și specii rare sau întâmplătoare. Cu toate că au indicii de dominare diferiți, liderul absolut în toate variantele s-a dovizit a fi acidul aspartic, care poate fi considerat dominant, iar în fondul mineral, în afară de el, poziție de lider mai are și alanina.

Valoarea indicului Simpson la această grupă varia de la 0,0169 până la 0,0289, iar cota-parte a speciilor dominante pe variante alcătuia: în solul nefertilizat -16%, în cel fertilizat cu îngrășăminte organice și în cel natural – câte 17%, iar în solul fertilizat cu substanțe minerale – 13% (Tab. 1). A doua grupă hierarhică includea (întrunrea) reprezentanții cu indicii de dominare 0,0121- 0,0225.

Ca specie dominantă a grupei subdominante s-a distins acidul glutamic. Apoi urmează alanina și glicina, cu toate că în solul martor predomină alanina, în fondurile mineral și natural – glicina, iar în cel

Tabelul 1. Redistribuirea participării relative a speciilor în spectrul comun de AA, conform indicelui Simpson, „c” și a gradului de dominare, % *

<table>
<thead>
<tr>
<th>„c”*, gradul de dominare, % *</th>
<th>Fondurile experimentale</th>
</tr>
</thead>
<tbody>
<tr>
<td>nefertilizat</td>
<td>mineral</td>
</tr>
<tr>
<td>0,0289 17</td>
<td>aspartic</td>
</tr>
<tr>
<td>0,0256 16</td>
<td>aspartic</td>
</tr>
<tr>
<td>0,0225 15</td>
<td>glutamic</td>
</tr>
<tr>
<td>0,0196 14</td>
<td>glutamic</td>
</tr>
<tr>
<td>0,0169 13</td>
<td>aspartic</td>
</tr>
<tr>
<td>0,0144 12</td>
<td></td>
</tr>
<tr>
<td>0,0121 11</td>
<td>glutamic</td>
</tr>
<tr>
<td>0,0064 8</td>
<td>glicină</td>
</tr>
<tr>
<td>0,0049 7</td>
<td>serină</td>
</tr>
<tr>
<td>0,0036 6</td>
<td>leucină</td>
</tr>
<tr>
<td>0,0025 5-5,5</td>
<td>troină</td>
</tr>
<tr>
<td>0,0016 4</td>
<td>izoleucină</td>
</tr>
<tr>
<td>0,0009 3-2,4</td>
<td>valină</td>
</tr>
<tr>
<td>0,0004 2</td>
<td>cistină</td>
</tr>
<tr>
<td>0,0001-1</td>
<td>metionină</td>
</tr>
</tbody>
</table>
Cea mai numerosă (15) a fost grupa de AA cu rol secundar și cu cele mai mici valori ale indicelui "c": de la 0,0001 până la 0,0064. Cota lor în fondul nefertilizat, mineral, organic și natural alcătuia 56, 52, 45 și 55% corespunzător. Speciile rare în solul nefertilizat s-au constatat în concentrație de 9,4%, în fondul mineral – de 8,4%, în cel organic – de 8,0% și în cel natural – de 4,3%.

După cum rezultat din datele obținute, chiar și la diferit grad de dominare a speciilor, comuni pentru această grupă erau 14 AA: serina, leucina, prolină, treonina, valina, izoleucina, cistina, lizina, arginina, fenilalanina, histidina, metionina, tirozina și acidul γ-aminobutiric, cota-parte a cărora alcătuia până la 23%, iar valoarea indicelui de dominare nu depășea 0,0004. După gradul de dominare, asemănătoare pentru toate variantele, au fost concentrațiile de fenilalanină, lizină și acid γ-aminobutiric. În variantele arate s-a constatat mai puțină serină, treonină, histidină, prolină și metionină față de solul biocenozei naturale. Deși compoziția biomoleculelor din variantele arate era relativ identică, trebuie să subliniem că metionina și histidina din ele și-au pierdut statutul de specii secundare și au devenit rare, puțin însemnate.

În solul biocenozei naturale, metionina și histidina se caracteriza ca fiind la un nivel mai înalt de însemnătate, în comparație cu analogii săi din variantele arate. În așa fel, conform indicelui de dominare Simpson, în variantele experimentale a avut loc redistribuirea speciilor de AA și ele pot fi caracterizate în modul următor: fondul nefertilizat este variaanta cu cel mai mare număr de specii de AA cu rol secundar și cu cel mai mic număr de specii rare, alanine obține aici calitatea de subdominant în locul glicinei; fondul mineral este unica variație cu doi aminoaicii dominanți, Alanina trecând din grupa subdominantele în categoria speciilor dominante; fondul organic este variația unde alanina și glicina sunt specii subdominante, în celelalte variații fiind prezentate separat; fondul natural este variația unde a doua specie subdominantă este glicina, iar specia secundară – metionina. În afară de aceasta, în variantele arate, metionina și histidina au pierdut statutul de reprezentanți secundari și au trecut în categoria speciilor rare, neînsemnate.

Variantele arate se deosebesc de fondul natural și printr-un grad mai înalt de dominare al alaninei, treoninei, leucinei, argininei și printr-o valoare comparativ mai mică a indicelui Simpson al prolinei, cistinei și metioninei.

Este de remarcat că în variantele arate, pe seama reprezentanților cu aport neînsemnat, are loc redistribuirea speciilor și sporește însemnătatea cătorva specii obişnuite de AA. Spre exemplu, alanina din fondul mineral trece din categoria de specii subdominante în dominante (rezistente sau adaptate la condițiile mediului). În același timp, însă, s-a observat și efectul invers: speciile cu cel mai înalt indice de dominare devin posesori ai unui statut mai inferior.

Conform lui Odum (1975), diversitatea speciilor AA, de obicei, e mai înaltă în comunitățile demult formate și mai joasă – în cele nou apărute. De asemenea, ecosistemele stabile se caracterizează printr-o mai mare diversitate a speciilor decât cele care sunt supuse acțiunilor periodice sau sezoniere din partea omului sau a factorilor naturali. În cercetările noastre s-a observat că sub acțiunea stresului antropic are loc diminuarea numărului de specii cu nivel scăzut de participare și împreună cu aceasta, sporește însemnătatea unor specii obișnuite, adică are loc “concentrarea dominării lor”, mai ales în fondul mineral. Indicele de dominare Simpson, de rând cu indicele de diversitate a speciilor Margaleg și Menhinik, a înregistrat, concomitent, cele mai înalte valori de prezență a AA în solul nefertilizat, iar indicele diversității generale Shanon era maximă în solul natural. În solurile arate, valorile acestui indice erau mai joase decât ale celui din biocenoza naturală în medie cu 33%. În consecință, valorile lui nu prea mari indică concentrația joasă a dominării (Odum, Ü. 1975). De aici putem deduce că ecosistemele, create în gospodăriile agricole contemporane, sunt supuse unor modificări mai brusne și sunt mai puțin capabile să opună rezistență acțiunilor din exterior, comparativ cu sistemele naturale, maturizate, ale căror componente s-au adaptat într-un timp îndelungat.

În solurile arate, sub acțiunea factorilor antropici, are loc redistribuirea speciilor, iar diversitatea lor devine mai puțin variată. De aceea, cantitatea mai mică de AA în variantele antropice, parțial, poate fi explicată prin utilizarea imediat următoare sau prin transformarea lor (Umarov, M. et al., 2008), atunci când cantitatea mai mare de biomolecule din solul natural se menține din contul utilizării mai eficiente a AA.

CONCLUZII

Diversitatea speciilor de AA este maximă în varianța martor de sol, cu 53% mai mică în solul mineral și cu 50% mai mică în solurile organic și natural, cedând fonduului nefertilizat după indicii de diversitate Margalef (cu 2, 8 și 15%) și Menhinik (cu 7, 29 și 48%).

Cea mai înaltă concentrare a dominării a fost înregistrată în solul nefertilizat (c = 2,1025). În celelalte varianțe, valorile indicelui Simpson au alcătuit 48% în solurile mineral și natural și 50% în cel organic.

Cele mai înalte valori ale indicelui general de diversitate a speciilor au fost înregistrate în solul biocenozei naturale. În solurile arate, indicele Shannon era mai mic cu 33%, ceea ce reprezintă un argument în plus privind diminuarea diversității speciilor de AA din spectru, în rezultatul utilizării diferitor tehnologii agricole de prelucrare a solului.

REFERINȚE BIBLIOGRAFICE

2. EFREMOV, R.L., 2000. Soderžanie svobodnyh aminokislity v počvah sosnovyh biogeocenozov na klimatičeskoj transekte (Belorussi, Pol’ja). V: Počvovedenie, № 12, s. 1481-1486. ISSN 0032-180X.
11. UMAROV, M.M., ASEEEVA, I.V., 1971. Svobodnye aminikisloty v nekotoryh počvah SSSR. V: Počvovedenie, № 10, s.38-52. ISSN 0032-180X.

Data prezentării articolelor: 18.05.2014
Data acceptării articolelor: 05.11.2014
ПРОДУКТИВНОСТЬ И КАЧЕСТВО ЗЕРНА ОЗИМОГО ЯЧМЕНЯ В МНОГОФАКТОРНОМ ОПЫТЕ

Виктор БУРДУЖАН, Михаил РУРАК, Анжела МЕЛЬНИК
Государственный Аграрный Университет Молдовы

Abstract: The paper presents the studies on the following elements of winter barley cultivation technology in field experiments: two forerunner plants – grain pea (A - control) and vetch + oats; three sowing periods – optimal (B - control), acceptable and late; three sowing rates – 4.0; 5.0 (C - control) and 6.0 million of viable seeds. As a result of performed investigations, the authors established different responses of two winter barley varieties Tighina and Dostoinii to the forerunner plants, sowing periods and seeding rates. On average, the yield of Dostoinii variety over 3 years (2011-2013) for both forerunner plants was not significant: 2284 kg/ha for grain pea and 2321 kg/ha for the vetch + oats. The yield of Tighina variety having as a forerunner plant vetch + oats was significantly higher - by 164 kg/ha - than the one obtained after peas. The highest grain yield was received from both varieties and for both forerunner plants in terms of respecting the optimum sowing period. The optimum sowing rate was 5.0 mln. seeds per ha. The protein content in grains of winter barley variety Tighina after pea is higher than after vetch + oats: 11.66 and 11.02%, respectively. Dispersion analysis allowed to establish the influence degree of each technological element studied in the experiment and their interactions on the yield of investigated winter barley varieties. Over a period of 3 years, the influence degree of the forerunner plant was 15.92% for Tighina variety and 13.92% for Dostoinii variety. The most significant and decisive influence was recorded by the sowing period hence it was of 81.94% for Tighina variety and 72.49% for Dostoinii variety. Tighina variety was not influenced by the change of crop density, while the influence degree of this technological element was of 9.48% for Dostoinii variety.

Key words: Hordeum vulgare; Winter barley; Sowing date; Seeding rate; Forerunner plant; Grain yield; Protein content

ВВЕДЕНИЕ

Озимый ячмень – одна из важнейших кормовых культур Молдовы, которая ежегодно возделывается на площади 50-60 тыс. га. Это обусловлено высокими фуражными качествами, обеспечивающими широкое использование зерна в качестве концентрированного корма для всех видов животных и птицы.

Сорта озимого ячменя эффективно реагируют на такие элементы технологии, как предшественники, сроки посева и нормы высева (Кишке, М.Н., 2007; Чуварлиева, Г.В., Коротков, В.М., Васюков, П.П., 2010; Янковский, Н.Г., 2013).
Целью наших исследований является реакция различных по биологии и происхождению сортов озимого ячменя на отмеченные элементы технологии в многофакторном опыте.

МАТЕРИАЛ И МЕТОДЫ

Изучение продуктивности и качества зерна озимого ячменя сортов Тигина и Достойный проводились в течение трех лет (2011-2013) на учебно-опытной станции «Кетрось» Государственного аграрного университета Молдовы, расположенной в центральной зоне республики.

В опыте изучались следующие элементы технологии:
- два предшественника – горох на зерно (контроль А) и вика+овес;
- три срока посева – оптимальный (контроль В), допустимый и поздний;
- три нормы высева: 4,0; 5,0 (контроль) и 6,0 млн.высеа семян на 1 га.

Почва опытного участка представлена черноземом карбонатным, сформированном на лессовидном суглинике.

Содержание гумуса в пахотном слое составляет 2,5-3,0 %, содержание общего азота 0,17-0,20 %, фосфора 0,14 – 0,16 % и калия 1,4-1,6 %.

Механический состав почвы – среднесуглинистый, реакция почвенного раствора рН 7,0-7,2 нейтральная до слабощелочной. Содержание карбонатов начинается с поверхности почвы и повышается с углублением.

Метеорологические условия в годы проведения исследований значительно различались как между собой, так и от нормы. Средненеустойчивая температура воздуха за 2011 год составила 9,6°C за 2012-10,4°C и за 2013 год 11,7°C при средней многолетней 9,9°C.

В среднем за три года среднесуточная температура воздуха составила 10,7°C, что на 0,8°C выше нормы. Количество выпавших осадков также было неравномерным. В 2011 году сума их составила 463,6 мм, 2012-324,4 мм и в 2013 – 503,5 мм при значении этого показателя у нормы 492,0 мм. В среднем за годы исследований количество осадков составляет 430,5 мм, что на 61,5 мм или 12,5 % меньше нормы.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

В технологии возделывания озимого ячменя роль предшественника достаточно важна. Изучаемые в опыте предшественники оказали определенное влияние на урожайность зерна озимого ячменя. В среднем за три года продуктивность сорта Тигина по предшественнику горох на зерно составила 2126 кг/га, варьируясь от 2638 кг/га в 2011 году до 1317 кг/га в 2012 (Табл. 1). По предшественнику вика +овес средняя урожайность зерна по этому сорту составила 2290 кг/га, варьируясь от 2741 кг/га в 2011 до 1448 кг/га в 2012. Предшественник вика+овес обеспечил более высокую урожайность зерна на 164 кг/га, и эта разница является достоверной (HСРр(А=106 кг/га).

Таблица 1. Урожайность озимого ячменя сорта Тигина, кг/га, 2011-2013

<table>
<thead>
<tr>
<th>Норма высева, млн/га (фактор «С»)</th>
<th>Предшественник (фактор «А»)</th>
<th>Средняя по фактору «А»</th>
<th>HСРр, кг/га A=106</th>
<th>Средняя по фактору «В»</th>
<th>HСРр, кг/га B=130</th>
<th>HСРр, кг/га опыта</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,0</td>
<td>горох на зерно (контроль)</td>
<td>2540</td>
<td>2126</td>
<td>2602</td>
<td>-</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>вика+овес</td>
<td>2098</td>
<td>2290</td>
<td>2195</td>
<td>-407</td>
<td></td>
</tr>
<tr>
<td></td>
<td>оптимальный (контроль)</td>
<td>1647</td>
<td></td>
<td>1694</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>допустимый</td>
<td>2563</td>
<td></td>
<td>2702</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>поздний</td>
<td>2456</td>
<td></td>
<td>2443</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1725</td>
<td></td>
<td>1724</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,0 (контроль)</td>
<td></td>
<td>2555</td>
<td></td>
<td>2755</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>оптимальный (контроль)</td>
<td>1710</td>
<td></td>
<td>1710</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>допустимый</td>
<td>2389</td>
<td></td>
<td>2389</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>поздний</td>
<td>1718</td>
<td></td>
<td>1718</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,0</td>
<td></td>
<td>2712</td>
<td></td>
<td>2787</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>оптимальный (контроль)</td>
<td>1724</td>
<td></td>
<td>1728</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>допустимый</td>
<td>2484</td>
<td></td>
<td>2478</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>поздний</td>
<td>2275</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Из изучаемых сроков посева озимого ячменя по предшественнику горох на зерно наиболее высокая урожайность зерна получена при посеве в оптимальный срок – первая декада октября.
месяца. Она составила 2602 кг/га, что на 407 кг/га больше, чем при допустимом сроке посева (третья декада октября), и на 908 кг/га больше, чем при позднем сроке посева (первая декада ноября). Преимущество оптимального срока посева над остальными вариантами было достоверным (HCP_{opt}B=130 кг/га).

По предшественнику вика+овес наибольшая урожайность зерна получена также при посеве в оптимальный срок (первая декада октября) и составила 2702 кг/га, что на 259кг/га превышает урожайность, полученную при допустимом сроке посева (2443 кг/га), и на 978 кг/га урожайность, полученную при позднем сроке посева (первая декада ноября) – 1721 кг/га. Снижение урожая по сравнению с контролем В было достоверным.

Изучаемые нормы высева озимого ячменя в диапазоне 4,0; 5,0 и 6,0 млн. всхожих семян на 1 га существенного влияния на продуктивность растений не оказали. По вариантам густоты посева урожайность составила 2172(4,0 млн) – 2275 кг/га (6,0 млн). Отклонения от оптимальной нормы высева 5,0 млн/га (контроль С) были не существенны, так как находятся в пределах HCP_{opt}C=76 кг/га.

Продуктивность сорта Достойный по предшественнику горох на зерно в среднем за три года исследований составила 2284 кг/га, варьируясь по годам от 2827 кг/га в 2013 году до 1289 кг/га в 2012 (Табл. 2).

По предшественнику вика+овес средняя урожайность зерна этого сорта составила 2382 кг/га, варьируясь от 2941 в 2013 году до 1389 кг/га в 2012.

Предшественник вика+овес способствовал повышению урожая зерна на 96 кг/га по сравнению с предшественником горох на зерно (контроль А). Эта прибавка была существенной (HCP_{A}=49 кг/га).

Таблица 2. Урожайность озимого ячменя сорта Достойный, кг/га, 2011-2013

<table>
<thead>
<tr>
<th>Норма высева, млн/га (фактор «С»)</th>
<th>Пределенности по фактору «А»</th>
<th>Средняя по фактору «С»</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>горох на зерно (контроль)</td>
<td>вика+овес</td>
</tr>
<tr>
<td></td>
<td>оптимальный (контроль)</td>
<td>допустимый</td>
</tr>
<tr>
<td>4,0</td>
<td>2400</td>
<td>2267</td>
</tr>
<tr>
<td>5,0 (контроль)</td>
<td>2776</td>
<td>2486</td>
</tr>
<tr>
<td>6,0</td>
<td>2566</td>
<td>2584</td>
</tr>
<tr>
<td>Средняя по фактору «А»</td>
<td>2284</td>
<td>+98</td>
</tr>
<tr>
<td>HCP_{opt}кг/га A=49</td>
<td>2578</td>
<td>2446</td>
</tr>
<tr>
<td>Средняя по фактору «B»</td>
<td>-132</td>
<td>-722</td>
</tr>
<tr>
<td>HCP_{opt}кг/га B=76</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>HCP_{opt}кг/га опыта</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

По предшественнику горох на зерно на первом оптимальном сроке посева (первая декада октября) урожайность зерна сорта Достойный составила 2578 кг/га, что на 132 кг/га превысила таковую на допустимом сроке посева (третья декада октября) и на 722 кг/га урожайность, полученную на позднем сроке посева (первая декада ноября). Эти повышения были достоверными (HCP_{opt}B=76 кг/га).

По предшественнику вика+овес наибольшая урожайность зерна получена также на оптимальном сроке посева (первая декада октября): 2702 кг/га, что на 14 кг/га превысило урожайность, полученную при допустимом сроке посева (третья декада октября) – 2688 кг/га. Поздний срок посева (первая декада ноября) ведет к существенному снижению урожайности – до 1717 кг/га, что на 945 кг/га ниже урожайности при оптимальном сроке посева. Это снижение продуктивности является достоверным.

Изменение нормы высева озимого ячменя сорта Достойный от 4,0 до 6,0 млн всхожих семян на 1 га способствовало формированию урожая зерна на уровне 2226 – 2401 кг/га.

Снижение нормы высева с оптимальной 5,0 млн (контроль С) до 4,0 млн привело к достоверному снижению урожайности на 175 кг/га (HCP_{opt}C=76кг/га).

Дисперсионный анализ многофакторного опыта позволил нам установить степень влияния
каждого изучаемого в опыте элемента технологии и их взаимодействия на урожайность изучаемых сортов озимого ячменя. Из данных таблицы 3 следует, что за три года степень влияния предшественника составила 15,92 % для сорта Тигина и 13,92 % сорта Достойный. Наиболее значительным или решающим было влияние сроков посева: для сорта Тигина оно составило 81,94 %, а для сорта Достойный 72,49 %.

Таблица 3. Сила влияния изучаемых факторов на урожайность сортов озимого ячменя, % (2011-2013).

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Факторы</th>
<th>Изучаемые элементы технологии</th>
<th>Тигина</th>
<th>Достойный</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>предшественник</td>
<td>15,92</td>
<td>13,92</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>срок посева</td>
<td>81,94</td>
<td>72,49</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>нормы высева</td>
<td>0</td>
<td>9,48</td>
</tr>
<tr>
<td>4</td>
<td>AB</td>
<td>взаимодействие предшественник – срок посева</td>
<td>1,86</td>
<td>3,31</td>
</tr>
<tr>
<td>5</td>
<td>AC</td>
<td>взаимодействие предшественник – нормы высева</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>BC</td>
<td>взаимодействие срок посева – нормы высева</td>
<td>0,4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>ABC</td>
<td>взаимодействие предшественник – срок посева – нормы высева</td>
<td>0,15</td>
<td>0</td>
</tr>
</tbody>
</table>

Сорт Тигина оказался индифферентным к изменению густоты посева, в то время как степень влияния этого элемента технологии для сорта Достойный составила 9,48 %.

Двойное и тройное взаимодействие изучаемых факторов на урожайность обоих сортов озимого ячменя было незначительным или вообще отсутствовало.

Ценность зерна озимого ячменя для использования его в фуражных целях обусловлена наличием в нём биологически ценного протеина, который обладает в достаточном количестве суммой незаменимых аминокислот. Содержание протеина в зерне озимого ячменя сорта Тигина по предшественнику горох на зерно в среднем за три года составило 11,66 %, варьируясь по годам от 12,92 % в 2011 до 10,97 % в 2012 году (Табл. 4). По предшественнику вика + овес этот показатель составил 11,02 %, варьируясь от 13,07 % в 2011 до 10,26 в 2012 году.

По параметру сроков посева более высоким содержанием протеина отличается зерно, полученное при позднем сроке, – 11,41 %.

Выход протеина в урожае зерна по гороху на зерно в среднем составил 220,9 кг/га, варьируясь от 258,9 кг/га при оптимальном сроке посева (первая декада октября) до 173,6 кг/га при позднем посеве (первая декада ноября). По предшественнику вика + овес этот показатель составил 218,7 кг/га, варьируясь от 261,5 кг/га на оптимальном сроке посева (первая декада октября) до 163,7 кг при позднем посеве (первая декада ноября). По параметру сроков посева наибольший выход протеина (260,2 кг/га) отмечается на первом оптимальном сроке (первая декада октября) за счет более высокой урожайности зерна.

Таблица 4. Содержание и сбор протеина с урожаем зерна озимого ячменя Тигина (2011-2013)

<table>
<thead>
<tr>
<th>Срок посева, фактор B</th>
<th>Норма высева, млн/га</th>
<th>Содержание протеина, %</th>
<th>Выход протеина, кг/га</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>горох (контроль A)</td>
<td>вика + овес и средняя по сроку</td>
<td>± к контролю B</td>
</tr>
<tr>
<td>I - оптимальный</td>
<td>5,0</td>
<td>11,72</td>
<td>10,94</td>
</tr>
<tr>
<td>II - допустимый</td>
<td>5,0</td>
<td>11,49</td>
<td>11,08</td>
</tr>
<tr>
<td>III - поздний</td>
<td>5,0</td>
<td>11,77</td>
<td>11,04</td>
</tr>
<tr>
<td>средняя по предшественнику</td>
<td>11,66</td>
<td>11,02</td>
<td>-0,64</td>
</tr>
</tbody>
</table>

В зерне озимого ячменя сорта Достойный содержание протеина по предшественнику горох на зерно составило 11,51 %, варьируясь по годам от 13,20 % в 2011 году до 10,32 % в 2012 году (Табл. 5). По вика-овсу содержание протеина составило 11,67 %, варьируясь от 13,07 % в 2011 до 10,49 % в 2012 году.
Таблица 5. Содержание и сбор протеина с урожаем зерна озимого ячменя Достойный (2011-2013)

<table>
<thead>
<tr>
<th>Срок посева, фактор В</th>
<th>Содержание протеина, %</th>
<th>Выход протеина, кг/га</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>го́рх (контроль, А)</td>
<td>вика+овес</td>
</tr>
<tr>
<td>I – оптимальный (контроль В)</td>
<td>5,0</td>
<td>11,45</td>
</tr>
<tr>
<td>II - допустимый</td>
<td>5,0</td>
<td>11,53</td>
</tr>
<tr>
<td>III - поздний</td>
<td>5,0</td>
<td>11,56</td>
</tr>
<tr>
<td>средняя по предшественнику</td>
<td>5,0</td>
<td>11,51</td>
</tr>
</tbody>
</table>

По параметру сроков посева наблюдается четкая закономерность повышения содержания протеина в зерне озимого ячменя от 11,40% при оптимальном сроке посева (1 декада октября) до 11,97% при позднем сроке (1 декада ноября).

Выход протеина с урожаем зерна по предшественнику горох на зерно составляет 240,6 кг/га, изменяясь от 273,6 кг/га на первом сроке посева (1 декада октября) до 194,8 кг/га на третьем сроке.

По предшественнику вика+овес выход протеина с урожаем зерна составляет 246,6 кг/га, изменяясь по срокам посева с 269,7 кг/га при оптимальном сроке посева (1 декада октября) до 191,6 кг/га при позднем сроке посева (1 декада ноября).

В разрезе сроков посева наибольший выход протеина отмечается при оптимальном посеве 271,7 кг/га, также за счет более высокого урожая зерна.

ВЫВОДЫ

На основании результатов исследований можно сделать следующие выводы.

Из изучаемых элементов технологии возделывания озимого ячменя наиболее существенное влияние на урожайность сортов этой культуры оказали сроки посева, сила влияния их составила 81,94% для сорта Тигина и 72,49% для сорта Достойный.

Из изучаемых предшественников более высокую достоверную урожайность обеспечил предшественник вика+овес: 2382 кг/га у сорта Достойный и 2290 кг/га у сорта Тигина.

По параметру сроков посева более высокая урожайность зерна получена в оптимальный срок (1 декада октября) 2702 кг/га у обоих сортов.

Более высокое содержание протеина отмечается в зерне сорта Достойный – 11,67% по предшественнику вика+овес, по предшественнику горох на зерно у сорта Тигина – 11,66%.

Более высокий выход протеина с урожаем зерна отмечается при оптимальном сроке посева (1 декада октября) – 260,2 кг/га у сорта Тигина и 271,7 кг/га у сорта Достойный.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. КИРИЮШИН, Б.Д., УСМАНОВ, Р.Р., ВАСИЛЬЕВ, И.П., 2009. Основы научных исследований в агрономии. Москва: Колос, 397 с.
3. ЧУВАРЛИЕВА, Г.В., КОРОТКОВ, В.М., ВАСЮКОВ, П.П., 2010. Влияние сроков посева и нормы высева на урожайность озимого ячменя. В: Земледелие, №2, с. 32.
5. ЯНКОВСКИЙ, Н.Г., 2013. Минеральные удобрения и продуктивность новых сортов озимого ячменя. В: Земледелие, №1, с. 29.

Data prezentării articolului: 12.06.2014
Data acceptării articolului: 11.10.2014
ПИГМЕНТНЫЙ КОМПЛЕКС И ПРОДУКТИВНОСТЬ РАСТЕНИЙ ЯЧМЕНЯ ОЗИМОГО В ЗАВИСИМОСТИ ОТ ПРЕДШЕСТВЕННИКА И ДЕЙСТВИЯ РЕГУЛЯТОРА РОСТА АКМ

В.В. КАЛИТКА, Т.Н. КРАВЧЕНКО

Таврический государственный аграрный университет Украины

Abstract. This paper presents the field experiments (2009 - 2011) studying the effect of seeds and vegetative plants treatment with the growth regulator AKM on the pigment complex and productivity of winter barley plants (Dostoynyi Variety) cultivated after different forerunner plants: 1) naked fallow (the best), and 2) sunflower (bad). In order to assess the response of the pigment complex to the action of growth regulator and forerunner plant the chlorophyll and carotenoid content in the leaves of barley was determined in the phase of tillering, booting and heading stage. Concomitantly, it was determined the leaf area and net photosynthetic productivity (NPP). The obtained results suggest an anti-stress effect of the AKM preparation on the photosynthetic activity of winter barley plants, which is reflected in the efficiency of its effect on crop yield. The application of growth regulator increased the productivity by 13% (naked fallow) and by 26% (sunflower). AKM has a significant effect on the accumulation of chlorophylls a, b and carotenoids in the leaves, but the change in their shares and productivity is determined by the character of the forerunner plant. In general, the increase of the pigment fund, its functional activity and leaf area under the influence of growth regulator also intensifies the production process, fact proved by an increase in the net photosynthetic productivity of agroecosystem after a good forerunner plant (naked fallow) of 14-32%, and a poor forerunner plant (sunflower) - by 35-46% compared with the corresponding control variants. The growth regulator had a contribution of 13.5% on the NPP, the forerunner plant (factor B) - 80.3% and the interaction of factors - 4.4%.

Key words: Hordeum vulgare; Growth regulator; Preceding crop; Chlorophylls; Carotenoids; Yield

Введение

Современные технологии возделывания сельскохозяйственных культур предполагают использование регуляторов роста для более полной реализации генетического потенциала продуктивности растений. При этом регуляторы роста положительно влияют на приспособление растений к условиям существования на функциональном уровне.

Для характеристики функционального состояния растений, в частности, их реакций на стресс, наиболее информативными считаются показатели состава, содержания и соотношения пигментов (Maslova, T.G., Popova, I.A. 1993). При воздействии стрессовых факторов может происходить
повышение содержания пигментов, изменение их соотношения в листьях – как адаптивная реакция растений, обеспечивающая их устойчивость и продуктивность.

Целью проведенных исследований было обоснование влияния обработки семян и вегетирующих растений регулятором роста АКМ на пигментный комплекс и продуктивность растений ячменя озимого при выращивании по разным предшественникам в условиях южной степи Украины.

МАТЕРИАЛ И МЕТОДЫ

Полевые опыты проводились в 2009-2011 гг. в стационарном полевом севообороте ООО АПК «Исток» Запорожской области. Почвы опытных участков представлены черноземом обычным, среднесуглинистым с содержанием гумуса 2,9–3,2%, легкогидролизованного азота (по Корнфилду) – 71,5–75,6 мг/кг, подвижного фосфора и обменного калия (по Чирикову) – 130,5–135,5 мг/кг и 140,0–145,0 мг/кг соответственно.

Исследования проводили на районированном сорте озимого ячменя – дворучки Достойный с повышенной адаптивностью к условиям южных регионов Украины. Предшественники – пар чистый (лучший) и подсоленочный (плохой).

Агромeteorологические условия в годы проведения исследования отличались недостаточным количеством осадков и значительным варьированием гидротермического коэффициента по фазам развития растений (0,5–1,5).

Схема двухфакторного опыта предусматривала варианты: контрольный – обработка семян перед посевом Раксол Ультра (0,25 л/га) и опытный – обработка семян этим же препаратом и регулятором роста АКМ (0,26 л/га). Повторность – трехкратная.

Семена высевали в первую декаду октября сейкой «Horsch» на глубину 5–6 см с нормой высева 4,5 млн. всходных семян на 1 га. В фазе выхода в трубку проводилось опрыскивание вегетирующих растений опытных вариантов раствором регулятора роста АКМ (0,33 л/га) из расчета 200 л/га водного раствора. В контрольных вариантах растения опрыскивали водой. Агротехника на опытных участках общепринятая для зоны степи Украины (Ещенко, В.А., Кошетко, П.Г. и др. 2005).

Для оценки реакции пигментного комплекса на действие регулятора роста (фактор А) и предшественника (фактор В) определяли содержание хлорофиллов и каротиноидов в листьях ячменя в фазы кущения, выхода в трубку и колошения. Одновременно определяли площадь листьев и чистую продуктивность фотосинтеза (ЧФП) (Мусенко, М.М., Паршикова, Т.В., Славный, Л.С. 2001).

Для анализа отбирали активно функционирующие листья. Концентрацию хлорофиллов a и b определяли в ацетоновых вытяжках спектрографически 662 нм и 644 нм (Маслова, Т.Г., Попова, И.А., Попова, О.Ф. 1986), сумму каротиноидов – при длине волны 470 нм (Мусенко, М.М., Паршикова, Т.В., Славный, Л.С., 2001) на спектрофотометре 2800UV/VIS SPECTROPHOTOMETR. Долю хлорофиллов в светосодержащем комплексе (ССК) от их суммы рассчитывали исходя из того, что вся хлорофилл b находится в ССК, а соотношение хлорофиллов a/b в нем составляет 1,2 (Куренкова, С.В., Маслова, С.П., Табалянкова, Г.Н. 2007).

Продуктивность функционирования хлорофиллов рассчитывали как отношение прироста массы сухого вещества (СВ) растений к усредненному содержанию хлорофиллов в листьях (Куренкова, С.В., Маслова, С.П., Табалянкова, Г.Н. 2007).

Статистическую обработку результатов исследований проводили методом дисперсионного анализа (Доспехов, Б.А. 1985) с использованием ЭВМ, Statistica 6, Excel.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Пигментный фон фотосинтетического аппарата растений определяет их потенциальные возможности в формировании общей биологической продуктивности. Нами установлено, что содержание хлорофиллов в листьях контрольных растений в фазу кущения (осень) не зависит от предшественника (Табл. 1).

Обработка семян ячменя двуручки Достойный раствором АКМ оказывает существенное влияние на накопление в листьях хлорофиллов a, b и каротиноидов в осениний период вегетации,
но характер этого влияния определяется видом предшественника. По лучшему предшественнику (шр) происходило увеличение содержания хлорофила b на 18 % и каротиноидов на 32 %. При этом доля хлорофиллов в ССК опытных растений по сравнению с контрольными была на 9 % выше, а соотношения хлорофиллов a/b и пигментов хл. a + b / каротиноиды уменьшились в 1,2 раза, по-видимому, вследствие увеличения содержания хлорофила b и каротиноидов.

В условиях плохого предшественника (подсолнечник) адаптивный ответ в опытных растениях формируется преимущественно за счет повышения содержания в листьях хлорофила a (на 33%), поэтому соотношения хлорофиллов и пигментов увеличиваются соответственно на 42 и 10 % по сравнению с контролем.

Повышение концентрации пигментов в листьях опытных растений согласовывалось с усилением роста листовой поверхности и более высокой ЧПФ (Табл. 2).

После возобновления весенней вегетации формирование пигментного комплекса и ростовые процессы определяются как предшественником, так и регулятором роста. Однако влияние предшественника более значимо. В случае лучшего предшественника формирование фонда хлорофилла происходило постепенно, и суммарное содержание хлорофиллов a + b в листьях растений контрольного варианта достигало максимума (8,88 мг/г СВ) в фазу выхода в трубку. При плохом предшественнике этот показатель достигал максимального значения (7,05 мг/г СВ) в фазу весеннего кущения. При этом в последнем случае хлорофильный фонт быстро уменьшался, и в последующие фазы развития сумма хлорофиллов была в 1,4 раза меньше по сравнению с лучшим предшественником. Более низкий фон хлорофилла в случае худшего предшественника частично компенсируется большим (на 19%) его продуктивностью (Рис. 1).

Обработка семян регулятором роста AKM способствует более быстрому восстановлению вегетативной массы растений ячменя весной: содержание хлорофиллов a + b в листьях опытных
Таблица 2. Влияние регулятора роста АКМ и предшественника на площадь листовой поверхности и продуктивность фотосинтеза растений ячменя озимого

<table>
<thead>
<tr>
<th>Фаза развития</th>
<th>Вариант опыта</th>
<th>Площадь листовой поверхности, тыс. м²/га</th>
<th>ЧПФ, т/м². сут.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Предшественник - пар чистый</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кущение (осень)</td>
<td>1(К) 16,34</td>
<td>1,23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2(АКМ) 19,95</td>
<td>1,40</td>
<td></td>
</tr>
<tr>
<td>НСР 0,85</td>
<td>1,45</td>
<td>0,14</td>
<td></td>
</tr>
<tr>
<td>Кущение (весна)</td>
<td>1(К) 19,20</td>
<td>1,71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2(АКМ) 20,15</td>
<td>2,10</td>
<td></td>
</tr>
<tr>
<td>НСР 0,85</td>
<td>0,39</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td>Выход в трубку</td>
<td>1(К) 33,23</td>
<td>3,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2(АКМ) 39,85</td>
<td>4,80</td>
<td></td>
</tr>
<tr>
<td>НСР 0,85</td>
<td>1,41</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td>Колошение</td>
<td>1(К) 26,36</td>
<td>2,93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2(АКМ) 30,45</td>
<td>3,09</td>
<td></td>
</tr>
<tr>
<td>НСР 0,85</td>
<td>1,42</td>
<td>0,39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Предшественник - подсолнечник</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кущение (осень)</td>
<td>1(К) 16,21</td>
<td>1,38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2(АКМ) 17,96</td>
<td>1,93</td>
<td></td>
</tr>
<tr>
<td>НСР 0,85</td>
<td>0,67</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>Кущение (весна)</td>
<td>1(К) 19,97</td>
<td>2,09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2(АКМ) 23,79</td>
<td>2,83</td>
<td></td>
</tr>
<tr>
<td>НСР 0,85</td>
<td>0,60</td>
<td>0,13</td>
<td></td>
</tr>
<tr>
<td>Выход в трубку</td>
<td>1(К) 34,95</td>
<td>3,38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2(АКМ) 41,84</td>
<td>4,94</td>
<td></td>
</tr>
<tr>
<td>НСР 0,85</td>
<td>0,40</td>
<td>0,49</td>
<td></td>
</tr>
<tr>
<td>Колошение</td>
<td>1(К) 25,23</td>
<td>2,77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2(АКМ) 32,65</td>
<td>3,12</td>
<td></td>
</tr>
<tr>
<td>НСР 0,85</td>
<td>0,13</td>
<td>0,32</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 1. Влияние регулятора роста АКМ и предшественника на продуктивность хлорофилла растений ячменя озимого
рastений на 24 – 38% превышало контроль. Эффект влияния регулятора роста на биосинтез хлорофиллов в случае лучшего предшественника был в полтора раза выше.

Использование регулятора роста для опрыскивания вегетирующих растений более эффективно в случае худшего предшественника. Суммарное содержание хлорофиллов в листвах через 10 дней после опрыскивания растений увеличивалось по сравнению с необработанными растениями на 25%, а каротиноидов — на 59%, и эффект сохранялся до фазы колошения. В более оптимальных условиях (лучший предшественник) влияние регулятора роста значительно меньше как по величине, так и по продолжительности. Независимо от предшественника под влиянием регулятора роста доля хлорфилла в ССК в листвах обработанных растений увеличивалась на 7 – 13%, а соотношение хлорофиллов \(a/b \) и пигментов хлорофиллов \(a+b / \) каротиноиды уменьшалось на 14 – 21%.

В условиях технологического стресса (плохой предшественник) на фоне усилении накопления хлорофиллов после обработки растений регулятором роста эффективность функционирования пигментов увеличивалась на 19% по сравнению с необработанными растениями (рис.1).

Аналогичные результаты получены Куренковой С.В. и соавтором при опрыскивании многолетних злаков раствором гибберелловой кислоты (Куренкова, С.В., Маслова, С.П., Табаленкова, Г.Н. 2007). Этого не наблюдается в оптимальных условиях выращивания ячменя озимого.

Следовательно, в стрессовых условиях повышение содержания пластидных пигментов, доли хлорофиллов в ССК и эффективности их функционирования в обработанных растениях является адаптивной стратегией, позволяющей растениям реализовать потенциал продуктивности.

Одним из наиболее динамичных показателей фотосинтетической деятельности агроценоза является площадь листьев. Установлено, что в фазе активного роста растений (выход в трубку) между чистой продуктивностью фотосинтеза и площадью листьев существует корреляционная связь средней силы (\(r = 0,43 – 0,6 \)), и поэтому технологические мероприятия, способствующие увеличению площади ассимиляционной поверхности, повышают эффективность продукционного процесса. Обработка растений раствором АКМ способствует увеличению площади листьев на 20% по сравнению с необработанными растениями (Табл. 2). При этом влияние регулятора роста не зависит от предшественника. Однако в стрессовых условиях (плохой предшественник) продолжительность действия препарата почти в два раза больше, и в фазе колошения разница по площади листьев составляет 29% против 15,5% в оптимальных условиях (предшественник – пар).

В целом увеличение пигментного фона, его функциональной активности и площади листьев под влиянием регулятора роста интенсифицирует продукционный процесс, что подтверждается увеличением ЧПФ агроценоза по хорошему предшественнику (пар) на 14-32%, а по плохому (подсолнечник) — на 35-46% по сравнению с соответствующими контрольными вариантами. Доля влияния регулятора роста (фактор A) на ЧПФ составила 13,5%, предшественника (фактор B) – 80,3% и взаимодействии факторов – 4,4%.

Полученные результаты свидетельствуют об антистрессовом действии препарата АКМ на фотосинтетическую деятельность растений ячменя озимого, что отражается в эффективности его влияния на урожайность культуры. Обработка семян и вегетирующих растений ячменя озимого регулятором роста АКМ увеличивала урожайность на 13% при посеве по пару и на 26% при посеве по подсолнечнику (Калинкова, В.В., Ялоха, Т.М. 2011).

ВЫВОДЫ

Результаты исследований свидетельствуют, что на пигментный комплекс и продуктивность растений ячменя озимого существенное влияние оказывают и предшественник, и регулятор роста АКМ.

1. При посеве ячменя по плохому предшественнику растения испытывают стресс, особенно в период активного роста (фазы выхода в трубку и колошения), что отрицательно влияет на содержание пластидных пигментов, приводит к уменьшению индексов хлорофиллов и пигментов, ЧПФ и урожайности.

2. Предпосевная обработка семян и вегетирующих растений регулятором роста АКМ повышает содержание пигментов, но изменение их соотношения и продуктивность определяется характером предшественника.
3. При посеве обработанных семян по плохому предшественнику адаптация растений в осенний период вегетации происходит за счет увеличения индексов хлорофиллов и пигментов вследствие существенного повышения содержания хлорофилла a.

4. Опрыскивание растений раствором АКМ в период активного роста (фаза выхода в трубку) однозначно положительно влияет на состав и соотношение пигментов, а наибольшее значение ЧПФ в стрессовых условиях обусловлено также увеличением продуктивности хлорофиллов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

2. ЕЩЕНКО, В.А., КОШЕТКО, П.Г., ОПРЫШКО, В.П., КОСТОГРЫЗ, П.В., 2005. Основы научных исследований в агрономии. Киев. Действие. 288 с.
3. КАЛИТКА, В.В., ЯЛОХА, Т.М., 2011. Влияние регулятора росту АКМ на продуктивность и якість насіння ячменя озимого залежно від попередника в Південному Степу України. В: Агроекологій журнал [Україна], № 6(86), с.166-169.

Data prezentării articolului: 01.07.2014
Data acceptării articolului: 23.10.2014
INFLUENȚA PREPARATULUI FITOMAG ASUPRA INTENSITĂȚII PROCESELOR DE MATURARE LA FRUCTELE DE MĂR ȘI PRUN PE DURATA PERIOADEI POST-RECOLTARE

Nicolae BUJOREANU, Ion HAREA, Nina BEJAN, Ludmila GAVIUC
Institutul de Genetică, Fiziologie și Protecție a Plantelor al Academiei de Științe a Moldovei

Abstract: In order to provide quality fruits throughout the year for the market, it is necessary to develop and implement new and modern methods of storage. The investigations presented in this study had the aim to determine the influence degree of “Phytomag” preparation on the processes of apple and plum fruits ripening in the post-harvest period. After treating the apple and plum fruits with “Phytomag” preparation and putting them in specialized boxes for 24 hours, they were stored in refrigerated chambers at the temperature of 1°C and 85-90% relative air humidity. Apple fruits were stored for 120 days, and the plums - 30 days. In order to determine the influence degree of “Phytomag” preparation on the intensity of fruit ripening processes, the research was focused on the following biochemical and technological indices: the content of starch, carbohydrates, titratable acids, ascorbic acid (vit.C), flesh firmness and fruit shrinkage. The etylene synthesis inhibitor “Phytomag” significantly reduces the activity of the enzyme complex and, consequently, it slows down the biodegradation process of plastic substances involved in the ripening processes of apple and plum fruits. At the moment of removal from storage, the investigated fruits were characterized by a higher fruit pulp firmness, freshness, better aroma and flavor compared to the control variant, fact which enables us to conclude that, if necessary, their storage period could be extended.

Key words: Apples; Plums; Storage; Ethylene synthesis inhibitor; Ripening; Chemical composition

Rezumat: Pentru asigurarea permanentă a pieței cu fructe de calitate pe o durata cât mai extinsă a anului este necesară elaborarea și aplicarea unor noi metode și procedee moderne de păstrare. cercetările din această lucrare au avut ca scop aprecierea gradului de influență a preparatului “Fitomag” asupra derulării proceselor de maturare a fructelor de măr și prun pe durata perioadei post-recoltare. După tratarea fructelor de măr și prun cu preparatul “Fitomag”, specimens au fost depozita în camerele frigorifice și păstrate la temperatura de 1°C și umiditatea relativă a aerului de 85-90%. Fructele de măr au fost păstrate 120 zile, iar cele de prun – 30 zile. Pentru verificarea gradului de influență a preparatului „Fitomag” asupra intensității proceselor de maturare a fructelor, cercetările s-au inclut determinarea următorilor indicii: conținutul de amîndoaie, glucide, acizi titrabili, acid ascortic (vit.C), firmitatea miezului și perisabilitatea naturală. Inhibitorul de sinteză a etilenei “Fitomag” a încetinit în mare măsură activitatea complexului enzimatic și drept urmare biodegradarea substanțelor plastice, implicate în procesele de maturare a fructelor de măr și prun. La momentul externării de la păstrare, fructele cercetate s-au evidențiat prin firmitatea miezului, proștie, aromă și gust mai pronunțate față de fructele mărturii, fapt ce permite să concluzionăm, că perioada lor de păstrare, la necesitate, ar putea fi prelungită.

Cuvinte cheie: Mere; Prune; Păstrare; Inhibitor de sinteză a etilenei; Maturare; Compoziție chimică

INTRODUCERE

Problema păstrării de lungă durată a fructelor ii preocupă pe mulți cercetători și producători, interesul deosebit acordat acestei probleme, fiind condiționat de necesitatea asigurării populației cu fructe, struguri și legume pe o durată cât mai extinsă a anului. Tehnologiile de păstrare a produselor agricole aplicate în prezent în Republica Moldova nu asigură menținerea la un nivel înalt a calității și rezistenței acestora la diferite dereglații funcționale și boli fungice pe durata perioadei post-recoltare.

Dintre neajunsurile tehnologiilor de păstrare utilizate în Republica Moldova menționăm: lipsa utilajului pentru crearea și menținerea la nivelul optim a conținutului și raportului de gaze ale atmosferei controlate, precum și pentru menținerea temperaturii și umidității relative a aerului favorabile din celula frigorifică; perioada scurtă de păstrare a fructelor de măr și prun de soiuri timpurii, a sămburoaselor (caise, piersici, prune), a baciferelor (zmeură, agris, coacază) și a legumelor; dereglairea proceselor metabolice în cazul unor soiuri și specii de fructe și dezvoltarea la acestea a unor boli funcționale, spre sfârșitul perioadei de păstrare, în urma aplicării temperaturilor scăzute.

Neajunsurile sus-menționate au determinat efectuarea cercetărilor în domeniul și elaborarea a noi metode de păstrare a producției agricole. Una dintre acestea este aplicarea preparatului „Fitomag”, a cărui substanță activă constă din 1-MCP (1 - metilciclopopen), sintetizat de sâvântii rusi V. Gudkovskii (Institutul de Pomicultură din or. Miciurinsk) și V. Ţveţ (Universitatea Chimico-Tehnologică „D. Mendeleev” din or. Moscova).
Metoda menționată constă în expunerea fructelor și legumelor climacterice într-un mediu gazos îm bogățit cu inhibitorul de sinteză a etilenei „Fitomag”, în concentrațiile de 0.2-0.3 g/m² la începutul perioadei de păstrare. Producția astfel tratată poate fi păstrată o perioadă mai îndelungată, fără pierderi însemnate. Preparatul „Fitomag”, aplicat în concentrațiile indicate, este inofensiv și nu dăunează sănătății omului și mediului înconjurător.

MATERIAL ȘI METODĂ

Drept obiect de studiu au servit fructele soiurilor tardive de măr Florina, Renet Simirenco, Idared, Golden Delicious și fructele de prun, soiul Prezident.

Experiențele privind determinarea gradului de influență a inhibitorului de sinteză a etilenei „Fitomag” asupra intensității proceselor de maturare la fructele de măr și prun au fost efectuate în condițiile camerelor frigorifice ale bazei experimentale "Carpotron” a Institutului de Genetică, Fiziologie și Protecție a Plantelor al Academiei de Științe a Moldovei conform tabelului 1.

Tabelul 1. Obiectul de cercetare și variantele experienței

<table>
<thead>
<tr>
<th>Nr d/o</th>
<th>Varianta experienței</th>
<th>Obiectul de cercetare (soiul)</th>
<th>Cantitatea aplicată a inhibitorului de sinteză a etilenei</th>
<th>Timpul efectuării tratamentelor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fitomag 0,1 g/m²</td>
<td>Florina, R. Simirenco, Idared, G. Delicious</td>
<td>0,1 g/m³</td>
<td>La începutul perioadei de păstrare</td>
</tr>
<tr>
<td>2.</td>
<td>Fitomag 0,2 g/m²</td>
<td>Florina, R. Simirenco, Idared, G. Delicious</td>
<td>0,2 g/m³</td>
<td>La începutul perioadei de păstrare</td>
</tr>
<tr>
<td>3.</td>
<td>Martor</td>
<td>Florina, R. Simirenco, Idared, G. Delicious</td>
<td>Fără tratament</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Fitomag 0,2 g/m²</td>
<td>Prezident</td>
<td>0,2 g/m³</td>
<td>La începutul perioadei de păstrare</td>
</tr>
<tr>
<td>5.</td>
<td>Fitomag 0,3 g/m²</td>
<td>Prezident</td>
<td>0,3 g/m³</td>
<td>La începutul perioadei de păstrare</td>
</tr>
<tr>
<td>6.</td>
<td>Martor</td>
<td>Prezident</td>
<td>Fără tratament</td>
<td></td>
</tr>
</tbody>
</table>

Fructele soiurilor tardive de măr Florina, Renet Simirenco, Golden Delicious și Idared au fost tratate cu preparatul „Fitomag” în boxe speciale, aplicând cantitățile de 0,1 și 0,2 g/m³, iar pentru fructele de prun de soiul Prezident cantitățile aplicate au constituit 0,2 și 0,3 g/m³.

După expunerea timp de 24 ore în boxele experimentale fructele de măr și de prun au fost depozitate în camerele frigorifice experimentale ale bazei “Carpotron” și păstrate la temperatura de 1°C și umiditatea relativă a aerului de 85-90%. Perioada de păstrare a constituit 120 zile pentru fructele de măr și 30 zile pentru cele de prun. Variantele experiențelor montate au inclus câte 3 repetări. La fiecare repetare s-au luat în studiu câte 100 fructe de măr și prun.

REZULTATE ȘI DISCUȚII

Inhibitorii de sinteză a etilenei sunt aplicați pe larg la încetinirea proceselor de maturare, atât la fructele și legumele climacterice (mere, pere, banane, roșii ș.a.), cât și la menținerea prosprietății florilor tăiate (Dospehov, B.A. 1979). Utilizarea preparatului „Fitomag” în camera frigorifică permite majorarea termenului de păstrare a fructelor și legumelor, reducerea substanțială a pierderilor cauzate de procesele de dehidratare a țesuturilor, de bolile fungice și dereglările funcționale, de asemenea sporează rentabilitatea păstrării de lungă durată. Un alt aspect pozitiv în utilizarea acestui inhibitor de sinteză a etilenei este inofensivitatea lui pentru om și mediul inconjurător, atunci când este aplicat în cantitățile de 0,1-0,3 g/m³ (Dospehov, B.A. 1979).
Fructele de prun de soiul Prezident tratate cu preparatul menționat, în dozele de 0,2 și 0,3 g/m³, au fost menținute în această atmosferă timp de 24 ore, iar apoi depozitate în camera frigorifică experimentală a bazei „Carpotron” și păstrate timp de 30 zile la temperatura de 1°C și umiditatea relativă a aerului de 85-90%. Rezultatele obținute sunt prezentate în tabelul 2.

Tabelul 2. Determinarea gradului de influență a inhibitorului de sinteză a etilenei „Fitomag” asupra valorilor unor indicii biochimice și tehnologice la fructele de prun de soiul Prezident

<table>
<thead>
<tr>
<th>Varianta experimentei</th>
<th>Modificarea unor indici biochimici și tehnologice la fructele de prun de soiul Prezident pe durata perioadei de păstrare</th>
<th>Până la păstrare</th>
<th>După 30 zile de păstrare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fermitatea miezului, kg/cm²</td>
<td>Fermitatea miezului, kg/cm²</td>
<td>Conținutul de glucide, %</td>
</tr>
<tr>
<td>Fitomag 0,2 g/m³</td>
<td>3,40</td>
<td>19,6</td>
<td>3</td>
</tr>
<tr>
<td>Fitomag 0,3 g/m³</td>
<td>3,40</td>
<td>19,6</td>
<td>3,2</td>
</tr>
<tr>
<td>Martor</td>
<td>3,40</td>
<td>19,6</td>
<td>2,2</td>
</tr>
</tbody>
</table>

| DL 5% | - | 0,10 | 0,20 | 0,19 |

Datele prezentate în tabelul 2 denotă că inhibitorul de sinteză a etilenei Fitomag, aplicat la fructele de prun de soiul Prezident, la începutul perioadei de păstrare a lor în camera frigorifică, a înregistrat considerabil procesele de maturare, menținând la un nivel mai înalt fermitatea miezului (cu 0,9-1,0 kg/cm²) și conținutul glucidelor (cu 0,4-1,6%) față de fructele din varianta martor. Intensitatea sporită a proceselor de maturare la fructele netratate cu ”Fitomag” a corelat cu gradul de deshidratare a țesuturilor, care a fost mai mare cu 0,38-1,39% în raport cu fructele tratate.

Fructele de măr de soiurile Florina, Renet Simirencu, Idared și Golden Delicious au fost tratate cu inhibitorul de sinteză a etilenei Fitomag, în doze de 0,1 și 0,2 g/m³, și păstrate timp de 120 de zile la temperatura de 1°C și umiditatea relativă a aerului de 85-90% în celula frigorifică. Pe durata de păstrare, atât la fructele din varianta martor, cât și la cele tratate au fost depistate modificări în conținutul substanțelor plastice, ultimele, fiind mai pronunțate la fructele martor. Rezultatele obținute sunt prezentate în tabelul 3.

Tabelul 3. Determinarea gradului de influență a inhibitorului de sinteză a etilenei Fitomag asupra valorilor unor indicii biochimice și tehnologice la fructele de măr

<table>
<thead>
<tr>
<th>Soiul. Varianta experienței</th>
<th>Modificarea unor indici biochimici și tehnologice la fructele de măr pe durata a 120 zile de păstrare</th>
<th>Până la păstrare</th>
<th>După 120 zile de păstrare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fermitatea miezului, kg/cm²</td>
<td>Fermitatea miezului, kg/cm²</td>
<td>Fermitatea miezului, kg/cm²</td>
</tr>
<tr>
<td>Florina</td>
<td>4,0</td>
<td>8,9</td>
<td>2,4</td>
</tr>
<tr>
<td>Fitomag 0,1g</td>
<td>2,4</td>
<td>8,34</td>
<td>2,6</td>
</tr>
<tr>
<td>Fitomag 0,2 g</td>
<td>0,2</td>
<td>8,88</td>
<td>0,1</td>
</tr>
<tr>
<td>Martor</td>
<td>0,3</td>
<td>0,4</td>
<td>0,1</td>
</tr>
<tr>
<td>DL 5%</td>
<td>-</td>
<td>11,7</td>
<td>-</td>
</tr>
<tr>
<td>R.Simirencu</td>
<td>5,0</td>
<td>10,0</td>
<td>3,8</td>
</tr>
<tr>
<td>Fitomag 0,1g</td>
<td>3,7</td>
<td>11,6</td>
<td>1,4</td>
</tr>
<tr>
<td>Fitomag 0,2 g</td>
<td>0,5</td>
<td>0,1</td>
<td>0,4</td>
</tr>
<tr>
<td>Martor</td>
<td>1,0</td>
<td>10,4</td>
<td>1,4</td>
</tr>
<tr>
<td>DL 5%</td>
<td>-</td>
<td>10,0</td>
<td>-</td>
</tr>
<tr>
<td>Idared</td>
<td>3,2</td>
<td>10,0</td>
<td>1,8</td>
</tr>
<tr>
<td>Fitomag 0,1g</td>
<td>0,5</td>
<td>0,1</td>
<td>0,4</td>
</tr>
<tr>
<td>Fitomag 0,2 g</td>
<td>1,7</td>
<td>14,0</td>
<td>0,2</td>
</tr>
<tr>
<td>Martor</td>
<td>1,9</td>
<td>13,6</td>
<td>1,9</td>
</tr>
<tr>
<td>DL 5%</td>
<td>-</td>
<td>13,6</td>
<td>-</td>
</tr>
</tbody>
</table>
Din rezultatele prezentate în tabelul 3 se observă că influența inhibitorului asupra proceselor de maturare a fost evidentă la toate soiurile de măr luate în studiu. Preparatul utilizat a încetinit procesele de biodegradare în cazul fructelor tratate, indicie biochimici cercetați înregistrând la finele păstrării valori mai sporite în raport cu fructele din varianta martor. Spre exemplu, conținutul acidului ascorbic în variantele experimentale, a fost mai sporit față de cel al fructelor din varianta martor cu 0,82-4,10 mg/%, conținutul acizilor titrabili - cu 0,07-0,26%, conținutul glucidelor - cu 0,02-2,00%, iar conținutul masei uscate - cu 0,5-2,2%, în dependentă de soiul de măr cercetat.

Conținutul sporit de substanțe plastice în fructele tratate în raport cu fructele din varianta martor, constatat la finele perioadei de 120 zile de păstrare, confirmă că preparatul "Fitomag" a încetinit în mare măsură activitatea complexului enzimatic și biodegradarea substanțelor plastice implicate în procesele de maturare (îmbătrânire) a fructelor. Astfel, la momentul scoaterii de la păstrare, fructele cercetate s-au evidențiat prin fermenitate a miezului, prospetime, aromă și gust mai pronunțate față de fructele martor, fapt ce permite să concluzionăm că perioada lor de păstrare, la necesitate, ar putea fi prelungită cu încă 30-45 zile.

CONCLUZII

Inhibitorul de sinteză a etilenei "Fitomag", aplicat în concentrațiile recomandate, a manifestat o influență deosebită asupra intensității derulării proceselor metabolice din fructele de măr și prun cercetate în perioada de păstrare, ceea ce la final s-a reflectat asupra timpului de îmbătrânire a acestora. O dovadă în acest sens este conținutul redus al substanțelor plastice, implicate în procesele de respirație, gradul de deshidratare a țesuturilor și hidroliza polianhidrilor din peretii celulare înregistrate la fructele tratate în raport cu datele obținute pentru fructele din varianta martor.

Procedeul utilizat, având o acțiune bine conturată asupra desfășurării proceselor de maturare la fructele și legumele climacterice, poate concura avantajos cu metoda de păstrare în „atmosfera controlată”, care în prezent este pe larg utilizată, dar care este și destul de costisitoare.

REFERINȚE BIBLIOGRAFICE

3. GUDKOVSKIJ, V.A. i dr., 2014. Razrabotka tehnologičeskih osnov transportirovani plodov i ovoj s ispol’zovaniem preparata fitomag. V: Glavnij agronom, nr. 2, s. 64-73.

Data prezentării articolului: 10.05.2014
Data acceptării articolului: 23.10.2014
УДК 633.49:631.526.3:581.19

ДІНАМИКА ОСНОВНИХ БІОХИМИЧЕСКИХ ЕЛЕМЕНТОВ В КЛУБНЯХ КАРТОФЕЛЯ В ПРОЦЕССЕ ХРАНЕНИЯ

Оксана ЗАВАДСКАЯ, Ангелина КОВТУН
Национальный университет биоресурсов и природопользования Украины, Украина

Abstract. Nutritional and biological value of potato tubers is determined by the content of basic biochemical components, and primarily – dry matter, carbohydrates, proteins, vitamins, etc. The amount of biologically valuable components also determines the suitability of tubers for processing or for long-term storage and it depends very much on the varietal characteristics. In this study, different potato varieties grown in the conditions of southern Polissya of Ukraine, were investigated according to their biochemical and organoleptic indices before and after the long-term storage. Six potato varieties were used in the experiment, and namely: three varieties of German origin (Adretta, Bellarosa, Vineta), two domestic varieties (Svitanok kyivs’kui, Borodyans’ka rozheva) and one Dutch variety (Condor). The highest nutritive and biological value after six months of storage was recorded by the tubers of the varieties Svitanok kyivs’kui (control variant) and Vineta. A high content of starch (18.6 and 17.2%, respectively) and ascorbic acid (15.5 and 15.6 mg%, respectively) was maintained in these two varieties. A close direct correlation between the starch content and taste of boiled tubers was established. As a result of the correlation analysis it was revealed that the sugar content in potato tubers significantly affect their susceptibility to rotting ($r = 0.84 \pm 0.11$). After six months of storage, the tubers of Vineta variety received the highest score for the complex of organoleptic characteristics. Consequently, for long-term storage, it is more advisable to grow the potato varieties Vineta and Svitanok kyivs’kui.

Key words: Potatoes; Storage; Biochemical indices; Dry matter; Starch; Sugars; Ascorbic acid

ВВЕДЕНИЕ

В Україні щорічно вирощують більше 20 млн. тонн клубней картофеля. Сезон потреблення їх в свіжому вигляді непосадливо з поля достатньо короткий (3-3,5 місяця), то ється ще йо весь вирощений урожай навіть хранити в течіння ощадлененного періоду. Картофель продовольственного і кормового названня приходиться хранити в свіжому вигляді в течіння 8-9 місяців, щомісяця – 7-8. Таким образом, при сезонному вирощуванні картофеля в нашій країні продовольчий період її хранення значно превищает період вирощування (Скалецька, Л.Ф., Подплятов, Г.І., Сеньков, А.М. 2002).

Сорта картофеля мають різнє вміст одну виділення сухих речовин, а, следовательно, – і води. Они відрізняются по біохімічним і фізіологічним властивостям, а тому їхність дихання клубней і відмінного від состояния покоя ще разності. Сорта відрізняються між собою також по фізічним властивостям, от которых зависит транспортерсичність, пористость, об'ємна маса і в цілому – сохранность в течение определенного периода (Кретович, В.Л, Салькова, В.Т. 1990).
Многочисленными исследованиями установлено, что химический состав клубней и его изменения в процессе хранения зависят, прежде всего, от сорта. Однако эти показатели остаются не изученными для многих сортов картофеля отечественной и зарубежной селекции. Поэтому одной из задач наших исследований была оценка основных биохимических и органолептических показателей клубней различной степени спелости картофеля разных сортов до и после длительного хранения с целью выделения наиболее пригодных из них к хранению.

МАТЕРИАЛ И МЕТОДЫ

Исследования проводились в течение 2009-2010 гг. по методике однофакторных опытов (Щенк, В.О., Копитко, П.Г., Опришко, В.П. 2005). Клубни исследуемых сортов выращивали на опытных участках сельскохозяйственного научно-производственного предприятия «Россия». Хозяйство находится в зоне Полесья Украины на правом берегу Днепра. По агроклиматическим и почвенным характеристикам, а также данным об условиях распространения вирусных инфекций, хозяйство расположено в наиболее благоприятной зоне для выращивания высококачественного картофеля.

Для опыта отобрано шесть сортов, в частности: три сорта немецкого происхождения (Аретта, Белароза, Винетта), два – отечественного (Свитанок киевский, Бородянский розовый) и один – нидерландского (Кондор). Контрольные варианты определялись для каждой группы спелости отдельно. Для этого использовали отечественные, хорошо изученные и рекомендуемые для зоны Полесья сорта. Из раннеспелых сортов для контроля использовали сорт Бородянский розовый, районированный в 1993 г., из среднеранних сортов Свитанок киевский, зарегулированный в 1987 г. (Каталог сортов рослин, признатих для поширення в Україні у 2009 р.).

Повторность закладки полевого опыта четырехкратная с рендомизацией. Учетная площадь в полевом опыте составляла 100 м². Агrotechnика выращивания клубней картофеля, принятая в производственных условиях. Биохимические и органолептические анализы клубней картофеля перед закладкой на хранение и после нее проводили в научно-учебной лаборатории кафедры технологии хранения, переработки и стандартизации продукции растениеводства Национального университета биоресурсов и природопользования Украины (г. Киев) по общепринятым методикам (Скалецька, Л.Ф., Подприят, Г.И., Завадская, О.В. 2009). В частности из биохимических показателей определяли содержание сухого вещества, крахмала, сахаров и аскорбиновой кислоты. Органолептическую оценку проводили по 9-бальной шкале по комплексу следующих показателей: внешний вид, цвет, запах, вкус, устойчивость к потемнению. Хранили клубни в условиях стационарного углубленного хранилища без искусственного охлаждения. Температуру в хранилище поддерживали в пределах +1 – +5°C, относительную влажность воздуха – 85-90 %.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Установлено, что содержание сухого вещества в клубнях колебалось в пределах 20,2-27,8 %. Больше всего его было в клубнях сорта Свитанок киевский (контроль) – 27,8 % (Табл. 1).

Четкой зависимости между скороспелостью сорта и содержанием сухого вещества не наблюдалось. Между содержанием в клубнях крахмала и сухого вещества, как известно, существует прямая положительная корреляционная взаимосвязь. На этом базируется распространенный в практике метод быстрого определения сухих веществ и крахмала по удельной массе клубней. Наибольшее количество сухого вещества и крахмала накапливали клубни сорта Свитанок киевский (контроль) – 27,8 и 21,2 % соответственно.

Содержание сахаров в клубнях изучаемых сортов составляло от 0,44 до 0,62 % в зависимости от сорта. При этом общий показатель сахара не коррелировал с содержанием сахаров. Аскорбиновой кислоты содержалось от 14,1 до 20,4 мг %. По этому показателю также отличались сорта Свитанок киевский (контроль) и Кондор – 20,4 и 18,2 мг % соответственно. Следует отметить большее содержание этого витамина в среднеранних сортах (среднее по группе 15,9 мг %) по сравнению с раннеспелыми (среднее по группе 18,3 мг %). Данный факт можно объяснить тем, что высокое содержание витамина С наблюдается в клубнях при максимальном клубнеобразовании. У ранних сортов этот процесс происходит раньше, чем у
Таблица 1. Содержание основных биохимических показателей в клубнях картофеля разных сортов до закладки на хранение, среднее за 2009-2010 гг.

<table>
<thead>
<tr>
<th>Название сорта</th>
<th>Содержание в клубнях</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>сухого вещества, %</td>
<td>крахмала, %</td>
<td>сахаров (сумма), %</td>
<td>аскорбиновой кислоты, мг %</td>
</tr>
<tr>
<td>Раннеспелые сорта</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Бородянский розовый (контроль)</td>
<td>24,2</td>
<td>18,5</td>
<td>0,44</td>
<td>16,0</td>
</tr>
<tr>
<td>Беллароза</td>
<td>22,4</td>
<td>16,7</td>
<td>0,55</td>
<td>14,8</td>
</tr>
<tr>
<td>Винетта</td>
<td>24,8</td>
<td>19,0</td>
<td>0,48</td>
<td>17,8</td>
</tr>
<tr>
<td>Среднеранние сорта</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Свитанок киевский (контроль)</td>
<td>27,8</td>
<td>21,2</td>
<td>0,57</td>
<td>20,4</td>
</tr>
<tr>
<td>Адретта</td>
<td>20,2</td>
<td>14,4</td>
<td>0,62</td>
<td>16,3</td>
</tr>
<tr>
<td>Кондор</td>
<td>23,9</td>
<td>18,2</td>
<td>0,58</td>
<td>18,2</td>
</tr>
<tr>
<td>ИСП, %</td>
<td>1,5-1,7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Среднеранних, что и обусловило разницу. Однако чтобы подтвердить выявленную закономерность, следует провести дополнительные исследования.

Как в любом живом организме, в клубнях картофеля в период хранения происходят биохимические превращения. От интенсивности их прохождения зависят размеры потерь, вкусовые качества, устойчивость к болезням и др. Содержание основных биохимических показателей в клубнях картофеля после шести месяцев хранения приведены в табл. 2.

Таблица 2. Изменение содержания основных биохимических показателей в клубнях картофеля разных сортов за шесть месяцев хранения, среднее за 2009–2010 гг.

<table>
<thead>
<tr>
<th>Название сорта</th>
<th>Содержание в клубнях после хранения</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>сухого вещества, %</td>
<td>крахмала, %</td>
<td>сахаров (сумма), %</td>
<td>аскорбиновой кислоты, мг %</td>
</tr>
<tr>
<td>Раннеспелые сорта</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Бородянский розовый (контроль)</td>
<td>22,0</td>
<td>16,1</td>
<td>1,04</td>
<td>12,2</td>
</tr>
<tr>
<td>Беллароза</td>
<td>20,4</td>
<td>14,6</td>
<td>1,16</td>
<td>11,1</td>
</tr>
<tr>
<td>Винетта</td>
<td>22,3</td>
<td>16,4</td>
<td>0,82</td>
<td>14,8</td>
</tr>
<tr>
<td>Среднеранние сорта</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Свитанок киевский (контроль)</td>
<td>24,8</td>
<td>18,6</td>
<td>0,94</td>
<td>15,5</td>
</tr>
<tr>
<td>Адретта</td>
<td>17,8</td>
<td>12,8</td>
<td>1,02</td>
<td>12,2</td>
</tr>
<tr>
<td>Кондор</td>
<td>21,5</td>
<td>19,5</td>
<td>0,88</td>
<td>14,2</td>
</tr>
</tbody>
</table>

Как показывают результаты исследований, после шести месяцев хранения в клубнях картофеля содержание сухого вещества было достаточно высоким, в пределах от 17,8 до 24,8 %. Как и до хранения, наиболее их содержание установлено в клубнях сорта Свитанок киевский (контроль) – 24,8 %. В среднем за период хранения клубни теряли 2,2-3,5 % сухого вещества.

Содержание крахмала после хранения в клубнях изучаемых сортов колебалось в пределах от 12,8 % (сорт Адретта) до 18,6 % (сорт Свитанок киевский). Потери крахмала в процентах за период хранения составили от 1,6 до 2,6 %. При этом, разницы между сортами по группам спелости по данному показателю не обнаружено. Очевидно, это зависит только от сортовых особенностей.

В клубнях всех вариантов при хранении увеличивалось содержание сахаров. Однако их накопление было в общем незначительным, так как исследуемые сорта создавались как продовольственые и предназначаются для потребления в свежем виде. Накопление сахаров в период хранения снижает их вкусовые качества.

За период хранения клубней содержание сахаров в них изменилось больше, чем содержание...
крахмала. Єто законометно, так как сахара являются непосредственным источником энергии и расходуются на дыхание, кроме того, они служат исходным продуктом синтетических и гидролитических процессов обмена, происходящих в клубнях. Сахара, согласно данным литературы, являются также субстратом для развития бактерий и грибов (Кретович, В.Л., Салькова, В.Т. 1990). В нашем опыте наибольшее количество сахара после шести месяцев хранения устанавливали в клубнях сортов Беллароза – 1,06 % (на 0,26 % больше по сравнению с контролем) и Адретта – 1,02 %. Четкой зависимости между содержанием сахаров и группой специности сорта в годы исследований не выявлено.

Установлено, что после шести месяцев хранения в клубнях картофеля содержится значительное количество витамина С – в пределах 11,1-15,6 мг %. Наибольшее его количество сохранилось в клубнях сортов Винетта и Свитанок киевский (контроль) –15,6 и 15,5 мг % соответственно.

Наиболее экономно тратили крахмал и аскорбиновую кислоту в период хранения клубни сорта Винетта: потери в относительных процентах в этом варианте составляли 9,3 % и 12,4 %. Наибольшее количество сахаров накапливали клубни сорта Беллароза – их содержание при хранении возросло после вдвое. Установлено, что накопление сахаров в клубнях картофеля существенно влияет на склонность их к гниению (т = 0,74).

Как известно, потребители оценивают качество любой продукции прежде всего по ее общему виду, вкусу, цвету, запаху, то есть по органолептическим показателям. Наиболее высокую декоративную оценку по комплексу органолептических показателей после хранения получили клубни сорта Винетта – 6,8 балла по 9-бальной шкале (на 0,7 балла больше по сравнению с контролем), самую низкую – клубни сорта Адретта (5,2 балла). Они имели пресный, водянистый, горьковатый привкус. В результате проведенного корреляционного анализа установлена тесная прямая корреляционная связь между содержанием крахмала и вкусом вареных клубней – r = 0,87. Проведенный регрессионный анализ показал, что с увеличением содержания крахмала в клубнях на 1 % их вкус улучшается на 0,24 балла.

ВЫВОДЫ

Таким образом, по основным биохимическим показателям до закладки на хранение выделялись сорта Свитанок киевский (контроль), в клубнях которого накапливалось наибольшее количество сухого вещества (27,8 %), крахмала (21,2 %) и аскорбиновой кислоты (20,4 мг %). Наибольшую пицевую и биологическую ценность после хранения имели клубни сортов Свитанок киевский (контроль) и Винетта.

В них сохранилось высокое содержание крахмала (18,6 и 17,2 % соответственно) и аскорбиновой кислоты – 15,5 и 15,6 мг %. Накопление сахаров в клубнях картофеля в период хранения существенно влияет на склонность их к гниению. После шестимесячного хранения высший балл по комплексу органолептических показателей получили клубни сорта Винетта – 6,8 балла по 9-бальной шкале.

Для длительного хранения наиболее целесообразно выращивать сорта Винетта и Свитанок киевский.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Data prezentării articolului: 31.03.2014
Data acceptării articolului: 24.09.2014
БОЛЕЗНИ МНОГОЛЕТНЕЙ ДРЕВЕСИНЫ В АГРОЦЕНОЗАХ
ВИНОГРАДНИКОВ СЕВЕРНОГО ПРИЧЕРНОМОРЬЯ И
ОСОБЕННОСТИ ИХ РАЗВИТИЯ

E. Шматковская
Научный Центр «Институт виноградарства и
виноделия им. В.Е.Таирова», Украина

Abstract. Over the last decade, the diseases attacking
vine perennial organs, widely occurred in the
vineyards of southern Ukraine. They adversely affect
plant condition and resistance to other diseases, leading
to the decline and death of grapevine bushes. As the result of
the phytosanitary monitoring, conducted in the period
2009-2012 in the vineyards situated in the Northern Black Sea
region (Odessa, Nikolaev and Kherson regions of
Ukraine), a complex of grapevine wood diseases was
detected: black spot (excoriosis, the causal agent is the
imperfect fungus Phomopsis viticola Sacc.), infectious
dead-arm of grapevines (Eutypa armeniaceae Hansf. et
Carter, Sphaeropsis malorum Peck.) and esca or apoplexy
of grapevines. A dependence was established between
plant age and disease spreading. In the young vineyards (aged
5–6 years) a lower intensity of affection was
recorded - almost two times lower - than in the older
vineyards (aged 10-15 years). The degree of attack ranged
from 15 to 32% (black spot); 25-50% (infectious
dead-arm of grapevines); from 1-5% to 3-10% (esca). Also,
a close relationship between the development of diseases
and the weather was established.

Key words: Grapevines; Wood diseases; Infectious
dead-arm disease; Black spot; Esca

Résumé. Au cours du dernier dix ans, les maladies
attaquant les organes pérennes des vignobles,
widespread in the vineyards of southern Ukraine. They
adversely affect the plant condition and resistance to
other diseases, leading to the decline and death of
grapevines. As a result of phytosanitary monitoring,
conducted in the period 2009-2012 in the vineyards
situated in the Northern Black Sea region
(Odessa, Nikolaev and Kherson regions of Ukraine), a
complex of grapevine wood diseases was
detected: black spot (excoriosis, the causal agent is the
imperfect fungus Phomopsis viticola Sacc.), infectious
dead-arm of grapevines (Eutypa armeniaceae Hansf. et
Carter, Sphaeropsis malorum Peck.) and esca or apoplexy
of grapevines. A dependence was established between
plant age and disease spreading. In the young
vineyards (aged 5–6 years) a lower intensity of affection was
recorded - almost two times lower - than in the older
vineyards (aged 10-15 years). The degree of attack ranged
from 15 to 32% (black spot); 25-50% (infectious
dead-arm of grapevines); from 1-5% to 3-10% (esca). Also,
a close relationship between the development of diseases
and the weather was established.

Résultats. Au cours des dix dernières années, les
maladies attaquant les organes pérennes des vignobles,
fréquemment rencontrées dans les vignobles de l'Ukraine du
sud. Elles négativement affectent l'état de la plante et sa
résistance à d'autres maladies, entraînant la dégradation
et la mort des rameaux de vignes. En conséquence de
l'entretien phytosanitaire effectué dans les vignobles situés en
2009-2012 en région de la Mer Noire du Nord
(Odessa, Nikolaev et Kherson régions de
l’Ukraine), un complexe de maladies du bois des vignes a été
décelé: tache noire (excoriure, l'agent causal est le
fungus amorphique Phomopsis viticola Sacc.), brûlure
infectieuse des rameaux de vignes (Eutypa armeniaceae Hansf. et
Carter, Sphaeropsis malorum Peck.) et esca ou apoplexie
de vignes. Une dépendance a été établie entre
l'âge du pommier et la progression de la maladie. Dans les
vignobles jeunes (âge de 5–6 ans) l'intensité de l'affection
a été recordée - presque deux fois inférieure - par rapport à
les vignobles plus anciens (âge de 10-15 ans). Le degré d'attaque
echange de 15 à 32% (tache noire); 25-50% (brûlure infectieuse
des rameaux de vignes); de 1-5% à 3-10% (esca). En outre,
une relation étroite entre le développement des maladies
et les conditions météorologiques a été établie.

Mots-clés: Vignes; Maladies du bois; Brûlure infectieuse
de rameaux; Tache noire; Esca

ВВЕДЕНИЕ

Болезни древесины на виноградных насаждениях интенсивного типа своей распространённостью и вредоносностью ограничивают продуктивность и долговечность кустов. Заболевания вызываются различными по природе возбудителями, отличаются по симптомам проявления и особенностями распространения, а меры борьбы с ними имеют специфические особенности. Развитие, вредоносность, характер проявления болезней многолетней древесины связаны также и с неблагоприятными факторами окружающей среды – подмерзанием кустов винограда, почвенной и воздушной засухой (Асирнев, Э.А. и др. 1986).

Характерной особенностью инфекционных заболеваний является их свойство легко передаваться от одного растения к другому и при благоприятных условиях развиваться на виноградных насаждениях по типу эпифитотии.

Мониторинг позволяет установить момент и степень поражения растений, скорость развития инфекции, время завершения инкубационных периодов и другие факторы болезни. Это дает возможность определить оптимальный срок проведения защитных мероприятий, подбор средств защиты и нормы их внесения в рамках технологических схем, отработанных для возможных и текущих фитосанитарных и агроклиматических условий (Самойлов, Ю.К. и др. 2009).

В связи с этим, целью наших исследований явилось проведение фитосанитарного мониторинга и изучение особенностей развития болезней многолетней древесины винограда на насаждениях Северного Причерноморья.
Материал и методы

Материалом для проведения исследований служили виноградные насаждения Северного Причерноморья (Одесской, Николаевской и Херсонской областей Украины). Фитосанитарное состояние растений винограда оценивали на разных фазах их развития, согласно общепринятым методикам (Козар, И.М. 2005; Якушина, Н.А и др. 2006). В полевых условиях на протяжении 2009-2012 гг. методом визуальных наблюдений устанавливали степень распространенности и интенсивности развития заболеваний многолетней древесины.

Результаты и обсуждение

Маршрутные обследования в начале вегетации показали на перезимовавшей однолетней лозе и под корой штамбов и рукавов наличие спороношения – выпустившие участки. При повышении температуры выше 10°С на них образовывались плодовые тела гриба – многочисленные черные точки – пикниды, из которых впоследствии выходили споры и заражали уже молодые вегетирующие части куста.

Установлено, что на виноградных насаждениях Северного Причерноморья интенсивность поражения вырежившей лозы черной пятнистостью зависит от возраста кустов. В пределах исследуемых сортов показатель развития заболевания на вырезких побегах винограда возрастает на насаждениях кустов возрастом 10–15 лет (32 %) и уменьшается на молодых виноградниках (до 15 %), независимо от области, в которой проведены обследования (Рис. 1).

Рисунок 1. Интенсивность поражения черной пятнистостью (вырежившей лозы) виноградных насаждений Северного Причерноморья, 2009-12 гг.

В последующие фазы развития растений винограда фитосанитарные обследования показали, что ежегодно около 30–40 % кустов проявляли симптомы, характерные для растений, пораженных возбудителями инфекционного усыхания Sph. Malorum и E. armeniaceae. Кусты характеризовались задержкой распускания глазков, слабым развитием побегов, мелковолнистостью с деформированными листовыми пластинками. На поперечном срезе рукавов, рожков и плодовых звеёв многолетней древесины выявлялись коричневые пятна, которые охватывали часть или весь срез.

Нами установлена тесная связь развития заболеваний, вызывающих усыхание виноградных кустов, с погодовыми условиями, а также восприимчивостью сортов и величиной инфекционного запаса грибов на лозе. Так, анализ метеорологических показателей периода вегетации 2009-12 гг. показывает, что резкие перепады температуры и влажности воздуха (осадки) в зимний и весенний периоды негативно влияют на виноградные растения, ослабляя их рост, уменьшая интенсивность процесса фотосинтеза в листьях (пожелтение), что в конечном итоге снижает способность растения противостоять заболеваниям.
В результате обследования виноградников в хозяйствах Одесской, Николаевской и Херсонской областей Украины было установлено, что в зависимости от возраста насаждений интенсивность усыхания насаждений увеличивалась от 25 до 50 % кустов (Рис. 2).

Рисунок 2. Интенсивность поражения (% инфекционным усыханием кустов виноградных насаждений Северного Причерноморья, 2009-12 гг.

Характерными симптомами повреждений в период начала созревания ягод были – прекращение роста побегов, потемнение и побурение ягод, появление на многолетней древесине глубоких некротических пятен. Наибольшая интенсивность поражения инфекционным усыханием наблюдается на фоне высокой температуры, достигающей под прямыми солнечными лучами 30 °С и более.

В последнее время на виноградных насаждениях Северного Причерноморья наблюдается сильное развитие эски двух типов, отличящихся по степени поражения кустов. Первый тип проявляется обычно в самые жаркие месяцы (июнь, август) и характеризуется быстрым увяданием и гибелью растения (апоплексия). Наиболее распространенная форма заболевания – хроническая (второй тип), которая может развиваться при невысоких температурах и достаточно высокой влажности воздуха. При этом пораженные кусты отличаются от здоровых желтой или красной окраской листьев. Ткани между жилками постепенно засыхают, листья опадают. Пораженные кусты отстают в росте, побеги их имеют укороченные междоузлия, образуют много пасынков.

В 2009 году на конец вегетационного периода заболевание распространялось на 30 % кустов, а в 2010 году – на 15-20 %. В 2010 году распространенное и развитие эски, по сравнению с 2009 годом, было меньше. Высокие температуры в этот год благоприятствовали развитию эски по типу апоплексии, быстро развиваясь, но не достигая полной гибели всего растения.

Первые симптомы поражения эски в 2010 году были выявлены во второй декаде июня, на единичных кустах. На пораженных растениях была зафиксирована начальная стадия развития заболевания, которая выражалась в изменении окраски листьев. Степень развития болезни на разных сортах достигала 6,5 %.

Условия 2012 года стали неблагоприятными для развития эски. Болезнь была диагностирована в третьей декаде мая на нескольких кустах сорта Каберне-Совиньон. На виноградниках старше 15 лет показатель «распространение заболевания» на конец вегетационного периода не превышал 5,0 %. На более старых насаждениях он был от 10 % и выше (Рис. 3).

По результатам обследования основных виноградных насаждений хозяйств юга Украины были выявлены наиболее поражаемые виноградные сорта и установлено зависимость распространения эски от возраста виноградного растения. На виноградных насаждениях возраста 5-6 лет распространенность заболевания составляло 1-5 %, возрастом 10-15 лет – 3-10 % (Рис. 4).

В связи с тем, что болезни многолетней древесины вызываются рядом патогенов, меры борьбы с ними значительно усложняются. При составлении системы защитных мероприятий следует учитывать особенности их биологии, закономерностей развития и патологического действия. Кроме химических средств защиты на виноградных насаждениях следует использовать и ряд агротехнических приемов. В качестве профилактических мер необходимо:
Рисунок 3. Интенсивность поражения эской виноградных насаждений Северного Причерноморья, 2009-12 гг.

а) возраст насаждений 5-6 лет

б) возраст насаждений 10-15 лет

Рисунок 4. Распространение эски на разновозрастных виноградных насаждениях, ННЦ «ИВиВ им. В.Е. Таирова», 2012 г.

- избегать крупных ран при обрезке;
- инвентарь для сухой и зеленой обрезки перед началом выполнения операций регулярно протирать дезинфицирующим раствором;
- обрезанную лозу утилизировать за пределами участков.
ВЫВОДЫ

Нами выявлено, что в последнее время на виноградных насаждениях Северного Причерноморья наблюдается высокая степень распространения и развития болезней многолетней древесины – инфекционного усыхания (черное отмирание рукавов, эутипоэз), черной пятнистости и эски. Для снижения инфекционной нагрузки и повышения устойчивости растений к болезням следует проводить их профилактическую и искореняющую обработку химическими средствами защиты, совмещая ее с агroteхническими методами борьбы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. АСРИЕВ, Э.А., БОЙКО, О.А. и др., 1986. Методические рекомендации по защите виноградников интенсивного типа от болезней древесины. Ялта: Магарач. 16 с.
2. САМОЙЛОВ, Ю.К. и др., 2009. Биологическая защита виноградников на Украине. В: Защита и карантин растений. №5, с. 21-22.
3. КОЗАРЬ, И.М., 2005. Болезни и вредители винограда меры борьбы: науч.- методич. пособие по защите винограда от вредителей и болезней. Одесса. 64 с.
4. ЯКУШИНА, Н.А и др., 2006. Методические рекомендации по применению фитосанитарного контроля в защите промышленных виноградных насаждений юга Украины от вредителей и болезней. Симферополь: Полипресс. 24 с.

Data prezentării articolului: 26.03.2014
Data acceptării articolului: 25.09.2014
ЕСТЕСТВЕННОЕ ВОССТАНОВЛЕНИЕ PLEUROTUS OSTREATUS В УЛИЧНЫХ НАСАЖДЕНИЯХ И ПАРКАХ ГОРОДА ЛЬВОВА

Михаил ЛЕСЬ
Национальный лесотехнический университет Украины, г. Львов, Украина

Abstract. Studying the natural regeneration of Pleurotus ostreatus in the urban environment has an important role for the comprehensive investigation of habitat conditions of macrofungi. In forest site conditions of Roztochya Pleurotus ostreatus is found in the growing and mature pine-oak, pine-beech and hornbeam-oak- beech stands. The wood in the second and third stages of decomposition serves as a substrate for these macrofungi; weakened and dead standing hardwood trees, stumps and trunks. Oyster mushroom usually grows in the forest site conditions B2, B3, C2 - C4 and D2, D3. Stand density ranges from 0.5 to 0.8. In forest site conditions D2 and D3, an abundant grass cover and bushes are encountered, which promote the optimal growth and development of the fungus. This paper presents the results of studies of oyster mushroom development in street plantings and parks of Lviv city. The abundance of the fruiting bodies of Pleurotus ostreatus was established using the scales of Drude and Haas. The least number of studied macrofungi were noted on Zelyonaya street, where this species occurs singly (solitariae). They are more abundant in the streets Varshavskaya, Krasnaya Kalina, Lychakovskaya (copiosae 3). Small amounts of these mushrooms were found in Valovaya, Golovatskogo, Snopkovskaya (parsae) streets. In the studied plots, Pleurotus ostreatus mushrooms show spontaneous dispersion in the populations. In general, the climatic and edaphic conditions of Lviv city have a positive influence on the development of Pleurotus ostreatus.

Key words: Pleurotus ostreatus; Natural regeneration; Towns; Climatic conditions; Edaphic conditions

Реферат. Изучение естественного возобновления Pleurotus ostreatus в городской среде играет важную роль при комплексном исследовании условий местообитаний макромицетов. В лесорастительных условиях Росточья Pleurotus ostreatus встречается в дозревающих и спелых сосно-дубовых, буково-сосовых и грабово-дубово-буковых насаждениях. Субстратом для этих макромицетов служит древесина на второй и третьей стадиях разложения: осыпанные и мертвые стволовые деревья лиственных пород, пни, стволы. Вешенка обыкновенная обычно развивается в лесорастительных условиях В2, В3, С2 - С4 и Д2, Д3. Полюблю таких насаждений находится в пределах 0,5-0,8. В лесорастительных условиях Д2 и Д3 часто встречаются обиньши травяной покров и кусты, которые способствуют оптимальному росту и развитию гриба. В статье приведены результаты исследований развития вешенки обыкновенной в уличных насаждениях и парках города Львова. Обильное плодовое тело Pleurotus ostreatus установлено с помощью шкал обилия О. Друде и Г. Гааса. Менее всего исследуемых макромицетов омечено на ул. Зеленой, где данный вид встречается одиночно (solitariae). Более обильны они на улицах Варшаевская, Красной Калины, Лычковская (copiosae 3). В небольших количествах грибы размещены на улицах Валовая, Головацкого, Снопковская (parsae). Особь Pleurotus ostreatus на исследуемых пробных участках присутствует спонтанное размещение в популяциях. В целом климатические и эдафические условия города Львова положительно влияют на развитие Pleurotus ostreatus.

Ключевые слова: Pleurotus ostreatus; Естественное возобновление; Города; Климатические условия; Эдафические условия

ВВЕДЕНИЕ

Исследования макромицетов в пределах города играют важную роль: дают возможность оценить состояние окружающей среды и влияние ее на развитие ценозов; определяют условия экстенсивного выращивания съедобных грибов; позволяют судить о пригодности биогеоценотической среды для развития животных организмов.

Целое настоящей работы является исследование естественного развития Pleurotus ostreatus в городе Львове (Украина). Поскольку вешенка обыкновенная является съедобным видом, исследования актуальны с точки зрения определения условий, которые способствовали бы экстенсивному способу выращивания грибов (древесина, микроклимат, влажность, способ освещения и т. д.).

Грибы рода Pleurotaceae обладают рядом ценных качеств и преимуществ перед другими культивируемыми грибами. Вешенка очень технологична, имеет высокую скорость роста и
значительную конкурентоспособность применительно к посторонней микрофлоре. По данным ряда авторов (Дудка, И.А. и др. 1992), гриб растет на различных целлюлозо- и лигниновмещающих растительных отходах сельского хозяйства, пищевой и лесоперерабатывающей промышленности. На основе результатов многолетних исследований химического состава вешенки установлено, что она содержит все необходимые организму человека вещества (белки, жиры, углеводы, минеральные соли, витамины, пищевые волокна) и имеет при этом низкую калорийность (27 ккал) (Цапалова, И.Э. и др. 2002).

Установлено, что самое быстрое развитие плодовых тел вешенки обыкновенной происходит на мягких породах (тополь, каштан обыкновенный, яблоня), хуже на твердых породах (тагров, груша) (Кучеряев, С.В. 2007). Исследовано также влияние соли и способа производства новых видов ферментированной продукции на основе культивируемых грибов вешенки обыкновенной и овощей (морковь, перец сладкий) на динамику накопления молочной кислоты. Сделан вывод, что использование овощей способствует ускорению процесса ферментации, позволяя получать готовую продукцию на 4 дня раньше контроля (Тринчук, А. и др. 2011).

В Украине проводятся исследования иных условно съедобных грибов в условиях городских экосистем. В частности, в результате исследований в городе Одессе и его окрестностях обнаружено 54 вида макромицетов, которые входят в состав двух отделов, двух классов, 6 порядков, 16 семейств, 32 родов. В пределах города найдено 14 видов, а в пригородных районах – 49. В составе макромицетов выявлены следующие экологические группы: гумусовые сапротрофы (25 видов), ксилотрофы (16), подстилочные сапротрофы (8), микоризные грибы (3), копротрофы (2). По хозяйственному признаку исследуемая микрофлора подразделяется на съедобные грибы (17 видов), несъедобные и условно съедобные (21), ядовитые (5), используемые в медицине (2), грибы-паразиты деревьев (8), грибы – утилизаторы древесных отходов и валежника (5) (Бабенко, А.А. и др. 2008).

Установлено, что на территории парка «Феофания» эколого-трофическая структура исследованных макромицетов представлена тремя группами: ксилотрофы (28 видов грибов, 58% всего видового состава), факультативные паразиты деревьев и кустарников (15 видов, 31%), гумусовые и подстилочные сапротрофы (5 видов, 11%) (Иваненко, А.М. 2012).

Видовое разнообразие макромицетов на свалках западной лесостепи Украины невелико (0,91 по Симпсону и -1,9 по Шеннону). Равномерность распределения, рассчитанная по индексом Симпсона и Шеннона, характеризуется невысокими показателями: 0,43 и -2,71 соответственно, что свидетельствует о фрагментальном развитии грибов. Причинам этого являются нарушение природных условий произрастания макромицетов и техногенный прессинг на их развитие вследствие аэробных и анаэробных процессов, протекающих в толще свалок. Установлено, что макромицеты можно использовать как биоиндикаторы техногенных едафотопов свалок (Попович, В.В. 2012).

Материал и методы

Обилие плодовых тел Pleurotus ostreatus установлено с помощью шкал О. Друде и Г. Гааса. Обработка статистических величин осуществлена с помощью программного обеспечения Mathcad и Microsoft Excel -2010.

Результаты и обсуждения

В лесорастительных условиях Расточья Pleurotus ostreatus встречается в дозревающих и спелых сосново-дубовых, буково-сосновых и грабово-дубово-буковых насаждениях. Субстратом для этих макромицетов служит древесина на второй и третьей стадиях разложения: ослабленные и мертвые стоящие деревья лиственных пород, пеньки, стволы. Вешенка обыкновенная обычная
в лесорастительных условиях В2, В3, С2 - С4 и Д2, Д3. Полнота этих насаждений находится в пределах 0,5-0,8. В лесорастительных условиях Д2 и Д3, часто встречается обильный травяной покров и кусты, которые способствуют оптимальному росту и развитию гриба (Табл. 1).

Таблица 1. Таксационные характеристики насаждений, в которых было обнаружено плодовые тела вещени в обыкновенной

<table>
<thead>
<tr>
<th>Типы лесорастительных условий</th>
<th>Тип леса</th>
<th>Состав на насаждении</th>
<th>Полнота насаждения</th>
<th>Класс бонитета</th>
<th>Породы, на которых обнаружены плодовые тела</th>
</tr>
</thead>
<tbody>
<tr>
<td>В2 Кв. 23 отв. 11</td>
<td>В2 ДС</td>
<td>8Дз 1Сз 1Бкд +Гз</td>
<td>0,6</td>
<td>3</td>
<td>Бук лесной</td>
</tr>
<tr>
<td>В2 Кв. 31 отв. 5</td>
<td>В2 ДС</td>
<td>5Див 2Бкд 2Сз 1Гз+ЛПД</td>
<td>0,7</td>
<td>1</td>
<td>Граб обыкновенный, липа мелколистная</td>
</tr>
<tr>
<td>В3 Кв. 9 отв. 8</td>
<td>В3 ДС</td>
<td>5Д3 3ВЛч 2С3+БП</td>
<td>0,5</td>
<td>1</td>
<td>Ольха черная, береза бородавчатая</td>
</tr>
<tr>
<td>В3 Кв. 9 отв. 9</td>
<td>В3 ДС</td>
<td>7Сз 1Д3 1БП 1ВЛч</td>
<td>0,5</td>
<td>2</td>
<td>Дуб обыкновенный, береза бородавчатая</td>
</tr>
<tr>
<td>С2 Кв. 3 отв. 17</td>
<td>С2 ГДБ</td>
<td>9Сз Бкл+Гз+Дз</td>
<td>0,6</td>
<td>1</td>
<td>Бук лесной, граб обыкновенный</td>
</tr>
<tr>
<td>С2 Кв. 6 отв. 12</td>
<td>С2 ГДБ</td>
<td>4Дз 4Бкд 2Гз+ЯБ</td>
<td>0,7</td>
<td>1</td>
<td>Граб обыкновенный</td>
</tr>
<tr>
<td>С2 Кв. 11 отв. 11</td>
<td>С2 ГДС</td>
<td>7Бкд 3Сз 1Дз+Гз</td>
<td>0,7</td>
<td>1</td>
<td>Бук лесной</td>
</tr>
<tr>
<td>С3 Кв. 5 отв. 5</td>
<td>С2 ГДС</td>
<td>3Дз 4Гз 1Бкл 1БП 1Cз</td>
<td>0,8</td>
<td>2</td>
<td>Дуб обыкновенный, береза бородавчатая</td>
</tr>
<tr>
<td>С4 Кв. 9 отв. 7</td>
<td>С4 ВЛЧ</td>
<td>9ВЛч 1БП 3+Дз+ЯВ</td>
<td>0,6</td>
<td>3</td>
<td>Ольха черная</td>
</tr>
<tr>
<td>Д2 кв. 60 отв. 9</td>
<td>Д2 ДГБ</td>
<td>9Бкд 1Гз+Дз</td>
<td>0,75</td>
<td>1</td>
<td>Бук лесной, граб обыкновенный</td>
</tr>
<tr>
<td>Д2 Кв. 62 отв. 5</td>
<td>Д2 ДГБ</td>
<td>7Бкд 2Дз 1Гз+Сз</td>
<td>0,7</td>
<td>1</td>
<td>Бук лесной</td>
</tr>
<tr>
<td>Д2 кв. 64 отв. 3</td>
<td>Д2 ДГБ</td>
<td>10Бкд+Гз+Дз</td>
<td>0,65</td>
<td>1</td>
<td>Бук лесной, граб обыкновенный</td>
</tr>
</tbody>
</table>

Pleurotus ostreatus выявлен в насаждениях города Львова, в частности, в парках и в садах, на липе мелколистной (ул. Сечевых стрельцов), на горько-каштане обыкновенном (ул. Белоцерковская), тополе белом (ул. Красной Калины, ул. Шевченко), клене ясеневидном (ул. Валовая). Изучение биоэкологических особенностей плодоношения вещенки в естественных условиях показало, что основными факторами плодоношения гриба и формирования его урожая являются субстрат, температура и относительная влажность воздуха, а также уровень освещенности.

На рисунке 1-7 приведены фотографии Pleurotus ostreatus в различных экологических средах Львова.

На рис. 8 изображена карта с отметками обнаруженных местообитаний Pleurotus ostreatus.

Рисунок 1. Развитие Pleurotus ostreatus на ул. Валовая г. Львов
Рисунок 2. Развитие Pleurotus ostreatus на ул. Головашко г. Львов
Рисунок 3. Развитие Pleurotus ostreatus на ул. Варшавская г. Львов
Учитывая выявленные места роста исследуемого гриба можно утверждать, что климатические и едалические условия города способствуют его развитию.

Обилие Pleurotus ostreatus на исследуемых участках установлено по методикам О. Друде и Г. Гааса.

Таблица 2. Обилие Pleurotus ostreatus на исследуемых участках

<table>
<thead>
<tr>
<th>Название улицы Львова, где отмечен рост вешенки обыкновенной</th>
<th>Обилие за (Drude (1913))</th>
<th>Обилие за Haas ((1932))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Валовая</td>
<td>sparsae</td>
<td>3</td>
</tr>
<tr>
<td>Головацкого</td>
<td>sparsae</td>
<td>3</td>
</tr>
<tr>
<td>Варшавская</td>
<td>copiosae 3</td>
<td>5</td>
</tr>
<tr>
<td>Зеленая</td>
<td>solitariae</td>
<td>+</td>
</tr>
<tr>
<td>Снопковская</td>
<td>sparsae</td>
<td>3</td>
</tr>
<tr>
<td>Красной Калины</td>
<td>copiosae 3</td>
<td>5</td>
</tr>
<tr>
<td>Лычаковская</td>
<td>copiosae 3</td>
<td>5</td>
</tr>
</tbody>
</table>

Таким образом, наименьшее обилие исследуемых макромицетов отмечено на ул. Зеленой, где встречается единично (solitariae). Наибольшее обилие грибов наблюдается на улицах Варшавской, Красной Калины, Лычаковской, однако их фон не создают (copiosae 3). Грибы встречаются редко, в небольших количествах на улицах Валовой, Головацкого, Снопковской (sparsae).

Распределение особей в популяциях (Швердтфехер, Ф. 1968) может быть случайным (спонтанным), что наблюдается очень редко при однородной среде, когда организмы пытаются объединиться в группы; равномерным, когда грибы размножаются в условиях сильной конкуренции, которая способствует их равномерному распределению в пространстве; неравномерным (групповым), когда организмы пытаются создать группы, размещение близко к случайному (Работнов, Т.А. 1992). Оценка пространственной структуры популяции зависит от средней плотности популяции или способа размещения особей. Общую дисперсию (рассеивание) Pleurotus ostreatus в популяциях можно вычислить по формуле (Кучерявый, В.А. 2000):

\[S^2 = \frac{\sum (x - \bar{x})^2}{n-1}, \]

(1)
где S^2 – рассеяние особей; m – количество особей в каждой выборке; n – количество выборок; \bar{x} – среднее количество особей.

Особи Pleurotus ostreatus на исследуемых пробных участках присутствовали в разных количествах, что означает в популяциях. Количество Pleurotus ostreatus на пробных участках в г. Львов составляло 5, 3, 13, 2, 4, 16, 12 особи, их рассеяние, согласно формуле (1), составляет:

$$S^2 = \frac{(7,9-5)^2 + (7,9-3)^2 + (7,9-13)^2 + (7,9-2)^2 + (7,9-4)^2 + (7,9-16)^2 + (7,9-12)^2}{7-1} = 29,3 \text{ м}^2$$

Итак, рассеяние вида составляет 29,3 м². То есть, на основании анализа исследуемых участков роста венчика обыкновенной установлено, что общая площадь развития гриба в городе составляет почти 30 м². При случайном расположении особей значение дисперсии, примерно равное среднему значению грибов популяции, одновременно наблюдается тенденция к скоплению исследуемых макромицетов ($S^2 \geq m$). Полученное значение рассеяния вида является условным показателем, поскольку венчик обыкновенная развивается в нескольких ценотических средах.

Выводы

В результате проведения рекогносцировочно-маршрутных исследований парков и уличных насаждений города Львов выявлены места обитания Pleurotus ostreatus на следующих видах деревьев: бук лесной, граб обыкновенный, липа мелколистная, ольха черная, береза бородавчатая, осина, что является феноменом, поскольку съедобные культурные грибы в условиях антропогенной нагрузки городов встречаются редко.

Установлено, что в пределах Львова венчик обыкновенная растет в лесорастительных условиях В2, В3, С2-С4 и Д2, Д3. Полюса этих насаждений находится в пределах 0,5-0,8. Распределение особей Pleurotus ostreatus в популяциях неравномерное. На основании анализа исследуемых участков распространения венчика обыкновенной определено, что общая площадь развития гриба в городе составляет почти 30 м². Обилие макромицета на исследуемых участках в городе соответствует природным условиям развития.

Результаты исследований развития Pleurotus ostreatus в городе имеют большое значение для комплексной оценки экологического состояния окружающей среды, поскольку низкие значения обилия вида могут свидетельствовать об антропогенном воздействии на живые организмы. Следующие исследования будут направлены на определение в особях Pleurotus ostreatus нитратов и тяжелых металлов и условиях их накопления.

Библиографический список

Data prezentării articolului: 26.03.2014
Data acceptării articolului: 25.09.2014
УДК 635.82:631

ОТБОР УСТОЙЧИВЫХ К ВЫСОКИМ ТЕМПЕРАТУРАМ КУЛЬТИВИРОВАНИЯ ШТАММОВ PLEUROTUS PULMONARIUS (FR.) QUÉL.

Ирина Бандура, Елена Мироньчева, Людмила Кюрчева
Тарнопольский государственный агroteхнологический университет, Украина

Abstract. The paper presents the study of the technological parameters of 7 strains of Pleurotus pulmonarius (Fr.) Quél cultivated under the temperatures above 20°C. As a result, a promising strain was selected for its production in the growing conditions on the territory of Ukraine in the summer period. It was found that, taking into consideration such factors as the speed of reaching the technological maturity and biological efficiency, and for the purpose of industrial cultivation at the temperatures above 20°C, the sample recording the best productivity is the strain 2314 from the collection of blewits of Kholodny Institute of Botany, National Academy of Sciences of Ukraine. This strain recorded the maximum speed of technological maturity. The morphogenesis of the fruiting bodies in this variant was very rapid. The first mushrooms that have reached technological maturity were collected on the eleventh day after substrate inoculation. The duration of the fruiting cycle - 2,5 ± 0,3 days.

Key words: Pleurotus pulmonarius; Biological efficiency; Technological maturity; Fruiting cycle length

Реферат. Исследованы технологические показатели 7 штаммов грибов легочной Pleurotus pulmonarius (Fr.) Quél при культивировании в температурных условиях свыше 20°C. В результате проведен отбор перспективного штамма для возможной интродукции в производственные условия культивирования на территории Украины в летний период. Установлено, что, учитывая факторы скорости наступления технологической зрелости и биологической эффективности, для промышленного культивирования на температуру свыше 20°C наиболее перспективным с точки зрения максимальной продуктивности является штамм 2314 из коллекции культур плодоносящих грибов Института ботаники им. М.Г.Холодного НАН Украины. У данного штамма зафиксирована максимальная скорость технологической зрелости. Процесс морфогенеза плодовых тел в данном варианте был очень быстрым. Первые сростки, достигшие технологической зрелости, были собраны на одиннадцатые сутки с момента инокуляции субстрата. Длительность волны плодоношения - 2,5±0,3 дня. Биологическая эффективность (отношение массы свежих грибов на стадии технологической зрелости к абсолютно сухой массе субстрата по результатам первой волны плодоношения) - 62%.

Ключевые слова: Pleurotus pulmonarius; Биологическая эффективность; Технологическая зрелость; Длительность волны плодоношения

ВВЕДЕНИЕ

Развитие украинского грибоводства по пути интенсификации производства предполагает наличие непрерывного технологического цикла на протяжении всего календарного года. Но особенности поддержания технологических параметров культурообразующих камер на необходимом уровне в период с мая по сентябрь в Юго-восточной зоне Украины требуют увеличения расходов на охлаждение (Дворникина, А.А. 1990). Как следствие, повышается себестоимость грибной продукции, что на фоне сезонного уменьшения потребления грибов делает грибной бизнес убыточным. Опыт европейских стран, например, испанской компании Champinter, подсказывает, что переход на культивирование устойчивых к высокой температуре видов вешенки может обеспечить рынок необходимым количеством свежих грибов летом без увеличения производственных расходов. Перспективными для выращивания в высокотемпературных режимах (свыше 20°C) являются штаммы известного вида легочной вешенки - Pleurotus pulmonarius (Fr.) Quél., популярной как в Азии, так и европейских странах (Stamets, Paul 2000).

Целью настоящего исследования явился отбор и определение технологических параметров штаммов вешенки легочной Pleurotus pulmonarius (Fr.) Quél для возможной интродукции в производственные условия культивирования на территории Украины в летний период.
МАТЕРИАЛ И МЕТОДЫ

Субстрат для проведения испытаний был получен методом аэробной твердофазной ферментации в зоне слоя (Бисько, Н.А., Дудка, И.А. 1987; Бухало, А.С. 1990; Заикин, Н.А., Коваленко, А.Е., Гальчинкин, В.А. и др. 2007) и имел следующие технологические характеристики: влажность 74,44 %, pH=8,65, содержание общего азота 0,70 %, зольность 6,66 %, отношение С/Н = 69/1, микробиологический показатель (1,37±0,08)х10⁶ КОЕ на 1 г субстрата.

Субстратные блоки имели следующие технологические показатели: процент внесения мицелия 2,5±0,5 %, средняя масса блока 9740±260 г; диаметр 22±1 см, высота 75±3 см, плотность 0,33±0,07 г/ см³. Блоки были распределены в камере культивирования таким образом, чтобы обеспечить ламинарные потоки воздуха в зонах плотдоносения. Климатические параметры культивационных камер поддерживались системой постоянной вентиляции и увлажнения воздуха в режиме температуры на уровне 24±5°С, влажности на уровне 90±5 %, при этом содержание углекислого газа в воздухе камеры в период плотдоносения не превышало 0,12 %. Допускалось снижение температуры до 20±2°С в период блокообразования.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Во время инкубации субстрата существенных различий в характере вегетативного роста мицелия в вариантах исследования не обнаружено. На вторые сутки отмечали переход вегетативного мицелия на субстрат во всех вариантах опыта. На третьи сутки инкубации диаметр колоний, образованных вокруг единичных зерен посевного зернового мицелия, составлял в среднем 5±2 см. Вегетативный мицелий штамма 2314 образовывал визуально более тонкие гифы, в сравнении с другими штаммами. Гифы штамма HK-35 *Pleurotus ostreatus* (Jacq:Fr) Kumm, напротив, были плотными и тяжистыми. На 7 сутки отмечена полная колонизация субстратных блоков вегетативным мицелием, причем во всех вариантах, кроме 2314, блоки приобретали ярко-белую окраску с единичными прозрачными каплями метаболической жидкости в подпленочной области. Субстратные блоки в варианте 2314 имели серовато-белое окрашивание. На десятые сутки инкубации субстрат в варианте HK-35 наблюдалось образование плотной массы воздушного мицелия в подпленочной области. За время проведения опыта (40 дней) в данном варианте процесс блокообразования не наступил. В варианте 2314 на десятые сутки в перфорациях отмечено образование примордийальных валиков. Процесс морфогенеза плодовых тел в данном варианте был очень быстрым. Первые сростки, достигшие технологической зрелости, были собраны на одиннадцатые сутки с момента инкубации субстрата.
Сводные показатели технологической зрелости и длительности волны плодоношения представлены в таблице 1. (Данные по плодоношению штамма HK-35 *Pleurotus ostreatus* (Jacq:Fr) Kumm в условиях высокотемпературного культивирования отсутствуют.)

Таблица 1. Скорость наступления технологической зрелости и длительность волны плодоношения штаммами *Pleurotus pulmonarius* (Fr.) Quél при высокотемпературном культивировании

<table>
<thead>
<tr>
<th>Штамм</th>
<th>Технологическая зрелость, сутки</th>
<th>Длительность волны плодоношения, сутки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Среднее ± ст. ошибка</td>
<td>К вариации</td>
</tr>
<tr>
<td>537</td>
<td>20,1±1,4</td>
<td>0,22</td>
</tr>
<tr>
<td>668</td>
<td>13,3±0,2</td>
<td>0,04</td>
</tr>
<tr>
<td>694</td>
<td>26,6±0,8</td>
<td>0,11</td>
</tr>
<tr>
<td>707</td>
<td>27,4±0,2</td>
<td>0,02</td>
</tr>
<tr>
<td>708</td>
<td>28,1±1,0</td>
<td>0,11</td>
</tr>
<tr>
<td>2314</td>
<td>12,4±0,3</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Максимальная скорость технологической зрелости зафиксирована у штамма 2314, минимальная у штамма 708. Анализ общего технологического цикла первой волны плодоношения показал, что штаммы 2314 и 668 обладают самым коротким технологическим циклом, который фактически в 2 раза короче в сравнении с другими вариантами опыта.

Анализ коэффициента вариации скорости технологической зрелости (все варианты ниже 0,3) показал, что процесс морфогенеза в каждом из вариантов начинался практически одновременно на всех субстратных блоках исследуемой выборки. Это имеет большое значение для промышленного производства грибов, так как позволяет четко регулировать изменение климатических параметров в камерах выращивания при переходе от стадии инкубации к стадии плодообразования.

Длительность волны плодоношения (ДВП) также имеет важный технологический аспект. Эффективность процесса сбора обеспечивает короткий период волны, который мы наблюдали у всех штаммов, за исключением штамма 537. Короткий период плодоношения уменьшает трудозатраты сборщиков и сокращает расходы на поддержание климатических параметров камер в режиме усиленной вентиляции. Для штамма 537 показатель ДВП в 4 раза выше по сравнению со штаммами 2314, 708, 694, 668 и в 9 раз по сравнению со штаммом 707. Штамм 707 имел самый низкий показатель ДВП.

Биологическая эффективность исследуемых штаммов по результатам первой волны плодоношения представлена на рисунке 2.

Рисунок 2. Биологическая эффективность штаммов *Pleurotus pulmonarius* (Fr.) Quél. при высокотемпературном культивировании
Получені дані говорять о низькій біологічній ефективності ізучених штаммів, за виключенням штамму 2314. Так, показатель БЭ штамма 2314 в 1,8 раза выше, чем у штамма 537, в 2,2 раза выше в сравнении со штаммом 668, в 5,7 раз в сравнении со штаммом 694, в 5,5 раза – с 707 и в 4,5 раза – с 708.

Проведені ознаки розглянуті і аналіз колекції культур шляпочних грибів (ІВК) Інститута ботаніки им. М.Г.Холодного НАН України.

ВИВОДИ

Таким образом, благодаря комплексной оценке технологических показателей для промышленного культивирования при температуре свыше 22°С (летние условия) установлено, что наиболее перспективным в точке зрения максимальной продуктивности является штамм 2314 из коллекции культур шляпочных грибов (ІВК) Інститута ботаніки им. М.Г.Холодного НАН України.

БІБЛІОГРАФІЧНИЙ СПИСОК

7. ЗАЙКИНА, Н.А., КОВАЛЕНКО, А.Е. і др., 2007. Основы биотехнологии высших грибов, учебное пособие. СПб. 303 с.

Data prezentării articolului: 26.03.2014
Data acceptării articolului: 25.09.2014
ОЦЕНКА ПРОДУКТИВНОСТИ И СЕЛЕКЦИОННОЙ СТРУКТУРЫ ДУБА ОБЫКНОВЕННОГО В УСЛОВИЯХ ИЗМЕНЕНИЯ КЛИМАТА НА ПРИМЕРЕ ГЕОГРАФИЧЕСКИХ КУЛЬТУР

Н.С. НЕЙКО, Ю.А. ЕЛИСАВЕНКО, Л.В. СМАШИНЮК
ГП «Винницкая лесная научно-исследовательская станция» УкралиХА

Abstract. The aim of this paper is to study the geographical oak cultures from different regions that grow in the soil and climatic conditions of Vinnytsya region. The growth, development, breeding structure and state of oak trees are analysed. Following the methodology of forest inventory, the peculiarities of oak climatypes productivity in the geographical cultures of Vinnytsya region were studied according to the following parameters: planting density, distribution by diameter, height and breeding structure. The high adaptivity of oak under changing climatic conditions was established.

Key words: Oak; Climatypes; Geographical culture; Plant breeding structure

Реферат. В статье представлены результаты изучения географических культур дуба из разных регионов, произрастающих в почвенно-климатических условиях Винницкой области. Анализируются рост, развитие, селекционная структура и состояние культуры. В соответствии с методиками лесной таксации были исследованы особенности продуктивности климатипов дуба обыкновенного в географических культурах Винницкой области по параметрам густоты насаждений, распределения по диаметру, высоте и селекционной структуре. Установлена высокая адаптивность дуба обыкновенного в условиях изменения климата.

Ключевые слова: Дуб обыкновенный; Климатип; Географические культуры; Селекционная структура

ВВЕДЕНИЕ

Изучение географической изменчивости наследственных свойств лесных пород, в частности, дуба, имеет важное значение для теории и практики лесоводства. Основным средством для этого является создание сети географических культур (Киррилов, С.В., Яковлев, А.С. 2008).

Влияние изменений климата на сегодня все чаще исследуется путем изучения реакции древесных пород на их географическое перемещение (Kleinschmit, J. 1993; Matyas, Sc. 1996; Jensen, J. 2000). Основными объектами исследования таких воздействий являются рост, развитие, селекционная структура и состояние географических культур.

МАТЕРИАЛ И МЕТОДЫ

Исследования проводились в соответствии с методиками, разработанными в Украинском научно-исследовательском институте лесного хозяйства и агролесомелиорации (УкрНИИЛХА). Для каждого дерева были определены: диаметр ствола на высоте 1,3 м; селекционная категория; класс Крафта, состояние дерева, наличие пороков и повреждений, по возможности другие характеристики (Молоток, П.И., Патляй, И.Н., Давыдова, Н.И. и др. 1982.).

При обследовании насаждений использовалась шкала селекционных категорий, которая является модификацией шкалы Вересина (Вересин, М.М. 1963).

Состояние деревьев определялось по шкале, модифицированной на базе шкал категорий жизнеспособности дуба и санитарного состояния (Санитарні правила, 1995).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Географические культуры дуба обыкновенного были созданы на территории Тывровского лесничества ГП «Винницкого лесного хозяйства» в 1964 году. Семенной материал для создания лесных культур был отобран в 69 лесных хозяйствах в пределах ареала распространения дуба обыкновенного на территории бывшего Советского Союза. В качестве контроля был отобран семенной материал дуба из Винницкого лесного хозяйства. Отбор проводился с целью максимального представительства различных климатипов дуба обыкновенного в географических культурах.
Территориальное происхождение климатипов дуба обыкновенного показано на рисунке 1.

Рисунок 1. Происхождение климатипов дуба обыкновенного в пределах ареала их распространения

Все климаты на участке созданных культур пространственно расположены относительно сторон света следующим образом (Рис. 2).

В текущем году нами было проведено исследование географических культур дуба обыкновенного в указанном выше лесничестве. Составлены сплошные перечни деревьев с определением: диаметра, высоты, селекционной структуры и состояния. Одним из важных показателей адаптации деревьев к изменению условий является плотность растений, которая определяется их количеством на единицу площади. С данным показателем связаны особенности

<table>
<thead>
<tr>
<th>Климатип</th>
<th>Количество деревьев</th>
<th>Диаметр</th>
<th>Высота</th>
<th>Селекционная структура</th>
<th>Состояние</th>
</tr>
</thead>
<tbody>
<tr>
<td>К1</td>
<td>52</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>К3</td>
<td>65</td>
<td>43</td>
<td>31</td>
<td>58</td>
<td>55</td>
</tr>
<tr>
<td>К7</td>
<td>34</td>
<td>4</td>
<td>39</td>
<td>68</td>
<td>30</td>
</tr>
<tr>
<td>36</td>
<td>10</td>
<td>53</td>
<td>26</td>
<td>40</td>
<td>15</td>
</tr>
</tbody>
</table>

Рисунок 2. Схема размещения климатипов дуба обыкновенного в географических культурах
роста, развития, процессы отпада деревьев. Однако показатель является относительно информативным, так как после смыкания крон начинается взаимодействие между отдельными деревьями, в результате чего происходят процессы естественного изъятия. Особенности густоты климатипов дуба обыкновенного приведены на рисунке 3.

Рисунок 3. Распределение климатипов по общему количеству деревьев 1-4 классов Крафта (примечание: красным цветом выделен контроль)

По данным графика контрольные варианты, которые представлены местными популяциями, находятся как в левой, так и правой части гистограммы. Это говорит о значительном диапазоне плотности древостоев, как местных, так и инорайонных популяций.

Высокой плотностью характеризовались популяции 14(Смоленская, Великский), 16 (Латвийская, Отечественный), 16 (Кировградская, Головановский), 34 (Могилевская, Осиновский), 25 (Эстонская, Садергастский), 23 (Кировградская, Чернолесский). Самая низкая плотность была у популяций 57 (Ульяновская, Ново-Черемшанский), 35 (Волгоградская, Калинчевский), 10 (Ивано-Франковская, Коломийский), 67 (Молдавская, Сорокский), 68 (Полтавская, Полтавский). Большинство других климатипов находилось в пределах контрольных вариантов местной популяции. Для контрольной следует отметить, что только один из них (к2) характеризовался значительно более низкой плотностью.

Деревья 4 класса Крафта отражают лишь наличие деревьев, которые выпадают из состава насаждений в результате естественного изъятия. Большая часть таких деревьев находится в нижнем ярусе древостоев на разных стадиях усыхания. Поэтому более реальную картину отражает наличие деревьев 1-3 классов Крафта. На графике (Рис. 4) показаны особенности распределения их количества в разрезе климатипов.

Рисунок 4. Распределение экотипов по количеству деревьев 1-3 классов Крафта (географические культуры дуба, возраст - 50 лет)

Из графика видно, что большинство климатипов по сравнению со средним значением контроля находятся в левой части гистограммы. Это указывает на то, что значительная часть насаждений при наличии деревьев 1-3 классов Крафта имеет заметно более низкую плотность. К таким следует отнести климатипы 57 (Ульяновская, Ново-Черемшанский), 50 (Латвийская, Волгоградская, Средне-Актобинский), 30 (Полтавская, Зеньковский), 7 (Волгоградская, Средне-Актобинский). Значительно большим количеством таких деревьев по сравнению со средним значением контроля
Характеризуются растения климатов: 46 (Латвийская, Отресский), 3 (Брестская, Ганцевичский), 22 (Минский, Вилейский), 16 (Кировоградский, Головановский). Основные особенности распределения деревьев по средней высоте приведены на рисунке 5.

Рисунок 5. Распределение климатов дуба обыкновенного по средней высоте деревьев 1-3 классов Крафта (географические культуры дуба, возраст – 50 лет)

По данным гистограммы, среднее значение контроля расположено в правой части. Это указывает на то, что большинство инорайонных климатов по параметру высоты уступает контролю. Самая низкая средняя высота отмечена у деревьев климатов 27 (Башкирская, Иглинский), 57 (Ульяновская, Ново-Черемшанский), 13 (С-Петербургский, Ломоносовский), 31 (Башкирская, Туймазинский), 20 (Чувашская, Канашский), 25 (Эстонская, Сардарский). Средняя высота растений у деревьев климатов значительно превышают контроль: 34 (Могилевский, Осиповичский), 52 (Минская, Червенский), 64 (Брянский, Бежинский), 19 (Запорожская, Мелитопольский). Значительная часть климатов по производительности и по высоте приближается к контролю.

Другим важным показателем производительности является диаметр деревьев. Средний диаметр большинства климатов приближается к среднему значению контроля. Наряду с этим, контроль, находящийся в правой части диаграммы, указывает на преобладание среднего диаметра у растений местной популяции. Значительно меньше средний диаметр у популяций 25 (Эстонская, Сардарский), 11 (Литовский, Паневежский), 31 (Башкирская, Туймазинский), 44 (Литовский, Шлютский), 13 (С-Петербургский, Ломоносовский). Отдельные климаты по средним диаметрам значительно превышают местный контроль: 50 (Латвийская, Валянская), 69 (Днепропетровская, Пятихатский), 38 (Черниговская, Нежинский), 53 (Молдавская, Оргеевский), 24 (Харьковская, Чугуево-Бабчанский) (Рис. 6).

Рисунок 6. Распределение климатов дуба обыкновенного по средним диаметрам деревьев 1-3 классов Крафта (географические культуры дуба, возраст – 50 лет)

Особенности распределения деревьев по селекционной категории приведены на рисунке 7. По рисунку 7 видно, что местная популяция, представленная контролем по селекционной структуре, находится в левой части гистограммы. Несколько худшей селекционной структурой отличаются популяции 68 (Полтавская, Полтавский), 60 (Могилевская, Костюковичский), 32 (Калужская, Калужский), 45 (Ульяновская, Мелецкий), 50 (Латвийская, Отреский). К популяциям
Рисунок 7. Распределение климатипов дуба обыкновенного 1-3 классов Крафта по средней селекционной категории (географические культуры дуба, возраст – 50 лет)

со стволами высокого качества относятся: 35 (Волгоградская, Калачаевский), 28 (Луганская, Ивановский), 11 (Литовский, Паневежский), 7 (Волгоградская, Средне-Актубинский), 41 (Ровенская, Острожский), 51 (Вольнская, Владимир-Вольнский), 27 (Башкирская, Иглинский), 13 (С-Петербургский, Ломоносовский).

Распределение количества деревьев по селекционной структуре представлено на рисунке 8.

Рисунок 8. Распределение общего количества деревьев по селекционным категориям (в порядке убывания количества деревьев 2 селекционной категории)

По данным рисунка 7 наибольшим количеством деревьев второй селекционной категории характеризуются климатипы 13 (С-Петербургский, Ломоносовский), 25 (Эстонская, Садретаский), 29 (Эстонская, Ракверский), 46 (Латвийская, Огреский), 11 (Литовский, Паневежский). Также к этой группе можно отнести контроль к1. Наименьшее количество деревьев второй селекционной категории у популяций 19 (Запорожская, Мелитопольский), 69 (Днепропетровская, Пятихатский), 39 (Днепропетровская, Днепропетровский), 28 (Луганская, Ивановский). Малым количеством деревьев характеризуется контроль к7.

Наибольшая доля деревьев второй селекционной категории сосредоточена в популяциях 60 (Мотилевская, Костюковичский), 58 (Воронежская, Воронежский), 50 (Латвийская, Вараклянский), 47 (Житомирская, Бердиевский), 42 (Одесская, Котовский). Самая низкая доля таких деревьев в климатипах 28 (Луганская, Ивановский), 51 (Вольнская, Владимир-Вольнский), 35 (Волгоградская, Калачаевский), 27 (Башкирская, Иглинский), 39
Штунда селекции, nr. 2 (2014)

(Днепропетровская, Днепропетровский). Низкая доля деревьев высокой селекционной категории характерна также для контроля к7.

ВЫВОДЫ

Дуб обыкновенный характеризуется высокой адаптативной способностью к климатическим изменениям. Имеющиеся популяции отличаются сравнительно высокой сохранностью, хорошим ростом, состоянием и развитием. Разница в производительности по высоте и диаметру не очень велика. Более интенсивное ветвление по внешним морфологическим признакам ствола и кроны выявлено у южных популяций.

Значение контролей по ростовым и селекционным показателям имеет достаточно широкий диапазон как у лучших, так и у худших популяционных групп.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Data prezentării articolului: 26.03.2014
Data acceptării articolului: 25.09.2014
ПОКАЗАТЕЛИ ПРОДУКТИВНОСТИ ФАСОЛИ
ОБЫКНОВЕННОЙ В ЗАВИСИМОСТИ ОТ СОРТА И НОРМ
ВЫСЕВА В УСЛОВИЯХ ЗАПАДНОЙ ЛЕСОСТЕПИ УКРАИНЫ

Олег ОВЧАРУК
Подольский государственный аграрно-технический университет, Украина

Abstract. The article presents the results of studying the dynamics of yield components of the bean plants depending on the varietal characteristics and seeding rates. The investigations showed that the best productivity was recorded by the variety Mavka: the seeding rate of 450,000 seeds per hectare provided the yield of 1.83 t/ha. The number of pods per plant was 13.1 pcs., and the weight of 1000 seed was 201.5 g. The lowest productivity was recorded by Kharkovska shtambova bean variety: it was 1.37 t/ha at the seeding rate of 500 thousand seeds per hectare. The number of pods per plant for this variety was of 9.9 pcs., and one thousand seed weight was 145.1 g. It was established that the varietal characteristics and seeding rates affect the quantity of the yield. The most productive seeding rates for the investigated varieties were the following: 350 thousand seeds per hectare for Kharkovska shtambova and Bukovynka varieties and 400 thousand seeds per hectare for Nadia and Perlina bean varieties.

Key words: Phaseolus vulgaris; Variety; Seeding rate; Yield components

ВВЕДЕНИЕ

В настоящее время большая часть зерна фасоли выращивается в частном секторе на незначительных площадях, в основном на приусадебных участках, что не удовлетворяет потребности в этом продукте (Лихович, В.В. 2010; Овчарук, О.В. 2013). Возделывание фасоли и ее широкое внедрение в сельскохозяйственное производство требуют инновационных подходов к существующим технологиям, направленным на улучшение структуры посевов в целом и максимальную реализацию потенциала урожайности сортов. Выбор оптимальных способов и норм сева с учетом почвенно-климатических условий региона даст возможность максимально реализовать потенциал сорта, а также возможность влиять на продуциционный процесс растений фасоли (Петриченко, В.Ф., Мовичан, К.І., 2010; Овчарук, О.В. 2013).

МАТЕРИАЛ И МЕТОДЫ

Экспериментальная работа проводилась на опытном поле Подольского государственного аграрно-технического университета в полевом сезонообороте, в течение 2007-2012 годов, предшественник – озимая пшеница. Заданием было изучение влияния сорта и норм высева на продуктивность растений фасоли обыкновенной.

Климат южной части западной лесостепи Украины умеренно континентальный. Годовая сумма осадков составляет в среднем 581 мм, из них 68% выпадает в теплое время года. Суммарная фотосинтетическая радиация достигает 51,8 ккал/см², а за период «апрель-октябрь» – 42,2 ккал/см². Это позволяет выращивать в зоне высокие урожаи фасоли.
Почва – чернозем глубокий малогумусный, среднесуглинистый на лессе. Содержание гумуса (по Тюрину) в пахотном слое – 3,4-3,8%, легкогидролизного азота (по Корнфильтру) – 10,5-12,2 мг/100 г почвы, подвижного фосфора (по Чирикову) – 16,5 мг/100 г почвы, калия (по Чирикову) – 21,0 мг/100 г почвы, pH (солевое) – 7,3.

Посевная площадь экспериментального участка – 45,0 м², учетная – 25,2 м².

Учет урожая проводили методом сплошного сбора и взвешивания зерна из каждого учетного участка. Для определения биологической урожайности отбирали среднюю пробу, по которой определяли количественные и качественные показатели урожая. Изучались сорта фасоли: Харьковская штамбовая (Kharkovska shhtambova), Мавка (Mavka), Надя (Nadia), Буковинка (Bakovynka), Подолиночка (Podolynochka), Перлина (Perlyna). Для изучения норм высева были установлены следующие: 200, 250, 300, 350, 400, 450, 500 тысяч семян на один гектар.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Было установлено, что изучаемые сорта фасоли отличались между собой по элементам продуктивности, что, в общем, зависело от их сортовых особенностей (табл. 1).

Таблица 1. Динамика элементов продуктивности растений фасоли в зависимости от сорта и норм высева (средние показатели за 2007-2012 гг.)

<table>
<thead>
<tr>
<th>Норма высева, тыс. шт./га</th>
<th>Масса растений, г</th>
<th>Количество бобов на растении, шт.</th>
<th>Количество семян в бобе, шт.</th>
<th>Масса семян из растения, г</th>
<th>Масса 1000 семян, г</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сорт Харьковская штамбовая</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>25,7</td>
<td>17,3</td>
<td>3,3</td>
<td>9,3</td>
<td>164,4</td>
</tr>
<tr>
<td>250</td>
<td>23,7</td>
<td>16,4</td>
<td>4,2</td>
<td>10,1</td>
<td>151,6</td>
</tr>
<tr>
<td>300</td>
<td>20,8</td>
<td>15,5</td>
<td>3,9</td>
<td>9,2</td>
<td>146,2</td>
</tr>
<tr>
<td>350</td>
<td>18,4</td>
<td>14,1</td>
<td>3,7</td>
<td>8,9</td>
<td>154,3</td>
</tr>
<tr>
<td>400 (контроль)</td>
<td>17,4</td>
<td>11,6</td>
<td>4,4</td>
<td>7,7</td>
<td>145,2</td>
</tr>
<tr>
<td>450</td>
<td>15,2</td>
<td>12,3</td>
<td>4,1</td>
<td>8,6</td>
<td>168,2</td>
</tr>
<tr>
<td>500</td>
<td>13,3</td>
<td>9,9</td>
<td>3,9</td>
<td>5,8</td>
<td>145,1</td>
</tr>
<tr>
<td>Сорт Мавка</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>19,2</td>
<td>14,9</td>
<td>3,3</td>
<td>9,3</td>
<td>178,3</td>
</tr>
<tr>
<td>250</td>
<td>21,9</td>
<td>14,0</td>
<td>3,7</td>
<td>9,5</td>
<td>184,5</td>
</tr>
<tr>
<td>300</td>
<td>19,2</td>
<td>13,8</td>
<td>3,8</td>
<td>9,0</td>
<td>184,7</td>
</tr>
<tr>
<td>350</td>
<td>10,1</td>
<td>9,9</td>
<td>3,4</td>
<td>6,6</td>
<td>188,1</td>
</tr>
<tr>
<td>400 (контроль)</td>
<td>13,0</td>
<td>10,0</td>
<td>3,1</td>
<td>5,8</td>
<td>188,4</td>
</tr>
<tr>
<td>450</td>
<td>16,1</td>
<td>13,1</td>
<td>3,4</td>
<td>9,1</td>
<td>201,5</td>
</tr>
<tr>
<td>500</td>
<td>12,4</td>
<td>9,5</td>
<td>3,1</td>
<td>5,5</td>
<td>180,4</td>
</tr>
<tr>
<td>Сорт Надя</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>19,5</td>
<td>11,5</td>
<td>3,2</td>
<td>8,8</td>
<td>222,9</td>
</tr>
<tr>
<td>250</td>
<td>20,7</td>
<td>13,1</td>
<td>3,0</td>
<td>9,4</td>
<td>233,2</td>
</tr>
<tr>
<td>300</td>
<td>16,8</td>
<td>9,3</td>
<td>3,1</td>
<td>8,2</td>
<td>247,5</td>
</tr>
<tr>
<td>350</td>
<td>17,1</td>
<td>9,0</td>
<td>3,6</td>
<td>7,3</td>
<td>248,7</td>
</tr>
<tr>
<td>400 (контроль)</td>
<td>13,3</td>
<td>8,6</td>
<td>3,3</td>
<td>6,2</td>
<td>238,9</td>
</tr>
<tr>
<td>450</td>
<td>16,3</td>
<td>12,9</td>
<td>3,3</td>
<td>8,7</td>
<td>207,3</td>
</tr>
<tr>
<td>500</td>
<td>11,2</td>
<td>6,5</td>
<td>3,0</td>
<td>5,1</td>
<td>228,2</td>
</tr>
<tr>
<td>Сорт Буковинка</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>18,0</td>
<td>12,3</td>
<td>3,3</td>
<td>8,9</td>
<td>208,4</td>
</tr>
<tr>
<td>250</td>
<td>18,3</td>
<td>10,7</td>
<td>3,1</td>
<td>9,1</td>
<td>212,6</td>
</tr>
<tr>
<td>300</td>
<td>17,2</td>
<td>9,9</td>
<td>3,2</td>
<td>8,6</td>
<td>216,9</td>
</tr>
<tr>
<td>350</td>
<td>16,9</td>
<td>9,2</td>
<td>3,0</td>
<td>7,8</td>
<td>220,3</td>
</tr>
<tr>
<td>400 (контроль)</td>
<td>14,5</td>
<td>8,4</td>
<td>3,2</td>
<td>7,7</td>
<td>211,8</td>
</tr>
<tr>
<td>450</td>
<td>16,0</td>
<td>11,2</td>
<td>3,5</td>
<td>7,9</td>
<td>205,4</td>
</tr>
<tr>
<td>500</td>
<td>12,6</td>
<td>7,7</td>
<td>3,1</td>
<td>5,7</td>
<td>201,1</td>
</tr>
<tr>
<td>Сорт Перлина *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>20,1</td>
<td>13,5</td>
<td>3,5</td>
<td>8,7</td>
<td>203,7</td>
</tr>
<tr>
<td>250</td>
<td>19,4</td>
<td>11,8</td>
<td>3,3</td>
<td>9,1</td>
<td>198,4</td>
</tr>
<tr>
<td>300</td>
<td>17,2</td>
<td>10,3</td>
<td>3,4</td>
<td>8,3</td>
<td>196,1</td>
</tr>
<tr>
<td>350</td>
<td>16,7</td>
<td>9,7</td>
<td>3,2</td>
<td>8,8</td>
<td>205,2</td>
</tr>
<tr>
<td>400 (контроль)</td>
<td>16,1</td>
<td>9,1</td>
<td>3,0</td>
<td>9,1</td>
<td>212,3</td>
</tr>
<tr>
<td>450</td>
<td>15,8</td>
<td>13,2</td>
<td>3,7</td>
<td>9,8</td>
<td>198,6</td>
</tr>
<tr>
<td>500</td>
<td>13,3</td>
<td>7,9</td>
<td>3,3</td>
<td>6,1</td>
<td>195,8</td>
</tr>
</tbody>
</table>

Примечание: * - данные по сорту Перлина средние за 2011-2012 гг.
В опытах по изучению разных норм высева в пределах 200-500 тыс. семян было установлено значительное влияние данного критерия на изменение структуры урожая. Урожайности по исследуемым сортам зависела от густоты посева, что повлияло на изменчивость элементов продуктивности растений.

Увеличение площади питания формирует более производительные растения, с большим количеством бобов. За годы исследований у сорта Мавка формировалось в среднем 9,5-14,9 бобов на растении. Среди исследуемых сортов больше всего бобов формировалось на растениях сорта Харьковская штамбовая, в пределах 9,9-17,3 шт. Наименьшее количество бобов было у сорта Буковина – 7,7-12,3 шт. У сорта Перлина в зависимости от норм высева получено 7,7-12,3 бобов.

Исследования показали, что количество семян в бобе — более константный показатель. Среднее количество семян в бобе у сорта Харьковская штамбовая составляло 4,2 шт., у сорта Мавка 3,5 шт., у сорта Надия — 3,3 шт., у сорта Перлина — 3,4 шт.

Масса семян с растения у сорта Мавка наибольшей была 9,5 г при норме высева 250 тыс. шт./га, наименьшей — 5,1 при севе 500 тыс. шт./га. Среди исследуемых сортов наибольшим этот показатель был у сорта Харьковская штамбовая при севе 250 тыс. шт./га.

Масса 1000 семян у сорта Мавка в зависимости от норм высева значительно не изменялась и была в пределах 178,3-201,5 г. У сорта Надия с увеличением нормы высева от 200 до 350 тыс. семян на гектар масса 1000 семян повышается от 222,9 до 248,7 г. С последующим повышением нормы она снижается до 228,2 г.

Урожайность является результатом взаимодействия всех морфо-физиологических признаков, которые определяют особенности роста и развития растений в ценозе с условиями внешней среды. К ним относятся: особенности развития вегетативных и генеративных органов, реакция растений на неблагоприятные факторы среды и т. п.

О влиянии исследуемых факторов на урожайность зерна фасоли за годы исследований можно судить по данным таблицы 2.

Увеличение нормы высева семян фасоли для сорта Харьковская штамбовая до 300 тыс. шт./га способствовало получению достоверных прибавок урожая зерна на 2,6 ц/га по сравнению с нормой высева 200 тыс. шт./га, где урожайность составляла 1,41 т/га. Так, для этого сорта, в среднем за годы исследований у этого сорта при севе 200 тыс. шт./га (норма 450 тыс. шт./га) урожайность повысилась на 2,1 ц/га, при норме высева 300 тыс. шт./га – снизилась на 0,4 ц/га.

Прирост урожая при высоких нормах высева у сортов Мавка, Надия и Перлина был несущественным.

Таблица 2. Урожайность зерна фасоли в зависимости от сортов и норм высева, т/га
(средние показатели за 2007-2012 гг.)

<table>
<thead>
<tr>
<th>Сорт (фактор A)</th>
<th>Нормы высева, тыс. шт./га (фактор B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Харьковская штамбовая</td>
<td>1,41</td>
</tr>
<tr>
<td>Мавка</td>
<td>1,72</td>
</tr>
<tr>
<td>Надия</td>
<td>1,70</td>
</tr>
<tr>
<td>Буковина</td>
<td>1,69</td>
</tr>
<tr>
<td>Перлина*</td>
<td>1,73</td>
</tr>
</tbody>
</table>

$$HIP_{60}, \text{ ц/га} = A - 2,2; B - 2,0; AB - 3,1; X = 1,74; S_{x=0.95} = 2,93$$

Примечание:* - данные по сорту Перлина средние за 2011-2012 гг.

Таким образом, у сорта Харьковская штамбовая и Буковина высокие показатели урожайности были при норме высева 350 тыс. шт./га, у сорта Мавка – 300 тыс. шт./га, У сорта Надия и Перлина – 400 тыс. шт./га.

ВЫВОДЫ

Результатами исследований установлено, что наибольшую урожайность показал сорт Мавка при норме высева 400 тысяч семян на гектар. Наименьшая урожайность была у сорта Харьковская штамбовая – 1,37 т/га при норме высева 500 тысяч семян на гектар. Наиболее
Олег Овчарук. Показатели продуктивности фасоли обыкновенной в зависимости от сорта и норм высева...(66-69)

продуктивными нормами высева для сортов оказались: Харьковская штамбовая, Буковинка – 350 тыс. шт./га, Надия, Перлина – 400 тыс. шт./га.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

2. ОВЧАРУК, О., 2013. Характеристика сортів квасолі звичайної в умовах Лісостепу західного. В: Зб. наук. праць Інституту біоенергетичних культур і цукрових буряків. Київ, вип. 17 (1), с. 236-239.

Data prezentării articolului: 08.11.2013
Data acceptării articolului: 23.09.2014
ANALIZA COMPARATIVĂ A BIOMASEI OBŢINUTE DIN CULTURI ENERGETICE

Grigore MARIAN¹, Alexandru MUNTEAN², Andrei GUDÎMA³,
Victor TIŢEI ¹, Andrei PAVLenco¹
¹Universitatea Agrară de Stat din Moldova
²Grădina Botanică din Chişinău

Abstract. The field of research of this this paper is connected with the efficient valorization of renewable energy sources by ensuring the quality of solid biofuels produced from lignocellulosic biomass, derived from energy crops. The article aims to provide a comparative analysis of biomass derived from the fast growing plants and proposes an analysis of several varieties of prospective energy crops that could be grown in the Republic of Moldova. The researches were conducted in the Laboratory of Solid Biofuels within SAUM using standard methods for determining the main qualitative characteristics of the studied biomass. Based on the obtained results it was found that the biomass derived from energetic willow has good development prospects under Moldova’s conditions.

Key words: Energy crops; Biomass; Calorific value; Ash content; Solid biofuels

Rezumat. Domeniul de analiză al acestei lucrări este cel de valorificare eficientă a surselor regenerabile de energie prin asigurarea calității biocombustibililor solizi obținuți din biomasea lignocelulozică, provenită din plante energetice. Articolul urmărește scopul de a realiza o analiză comparativă a biomasei provenite din plante cu viteză mare de creștere și propune o analiză a câtorva specii de culturi energetice de perspectivă pentru a fi cultivate în condițiile Republicii Moldova. Cercetările au fost realizate în Laboratorul de Biocombustibili Solizi din cadrul UASM, folosindu-se metode standard de determinare a principalelor caracteisticic calitative ale biomasei studiate. În baza rezultatelor obținute s-a constatat că, pentru condițiile Republicii Moldova, un potențial bun de biomasa posedă salcia energetică.

Cuvinte cheie: Culturi energetice; Biomassă; Putere calorifică; Conținut de cenusă; Biocombustibili solizi

INTRODUCERE

Securitatea aprovisionării cu materie primă calitativă și accesibilă a întreprinderilor de producere a biocombustibililor solizi din Republica Moldova este principalul obstacol în calea instalării centralelor termice eficiente care funcționează pe bază de biomaseă. Dacă, inițial, atenția producătorilor și a cercetătorilor era focalizată spre folosirea în scopuri energetice a biomasei agrosilvice, atunci astăzi tot mai insistență se vorbește despre perspectiva dezvoltării culturilor energetice, culturi care înmagazinează în timpul creșterii și dezvoltării lor cantități mari de energie. Această situație este determinată atât de considerente economice, cât și de strategiile de dezvoltare a agriculturii Moldovei, strategii care, în mare măsură, sunt bazate pe dezvoltarea continuă a agriculturii durabile.

 Tehnologiile de obținere a producției într-o agricultură durabilă și sustenabilă, de regulă, presupun lăsarea în sol a unei cantități importante de biomaseă de origine naturală sau animalară, cum sunt reziduurile rezultate din activități agricole sau prelucrarea recoltei, substanțele vegetale și animale ramase din grădini tur și diferite activități casnice. Astfel, este evident interesul sporit al actualității folosirii la producerea biocombustibilor solizi a biomaseei lignocelulozice provenite din culturi energetice.

 Scoapul acestei lucrări este analiza comparativă a biomasei provenite dintr-o grupă de plante energetice care, la această dată, cu o probabilitate destul de mare, pot deveni o sursă sigură de materie primă pentru obținerea biocombustibililor solizi în condițiile Republicii Moldova.

În calitate de obiect al cercetării au servit plantele erbacee: topinamburul, silfia, hrișca de Sahalin și salcia energetică. A fost realizată o analiză comparativă a calității biomasei obținute din aceste culturi în raport cu ele însele și în raport cu biomasa provenită din reziduuri agricole folosite astăzi mai frecvent la producerea biocombustibililor solizi.

Importanță și actualitatea studiului realizat sunt justificate de rolul pe care-l are valorificarea biomasei obținute din plante cu potențial sporit de creștere în obținerea biocombustibililor solizi și argumentarea cultivării acestora în condițiile Republicii Moldova.
În rezultatul sintetizării datelor din literatura de specialitate și a cercetărilor experimentale proprii sunt formulate concluzii referitoare la cuantificarea calitativă a diferitor tipuri de biomasă pasibilă de a fi folosită la obținerea biocombustibililor solizi.

MATERIALE ŞI METODĂ

Probele luate în studiu au fost preluate de pe loturile experimentale ale Grădănilor Botanice (Institut) a Academiei de Științe a Moldovei și de pe plantațiile-test de salcie energetică din SRL ”BioAgroinvest”, comuna Bozieni, raionul Hâncești.

Conținutul de umiditate a fost determinat conform standardului SMV EN 14588:2012, prin metoda uscării în etuva electrică termoregibilă cu conversie naturală Memmert UNB. Masa probelor a fost determinată cu ajutorul balanței analitice AS 2120/C/2.

Puterea calorifică a probelor a fost determinată în conformitate cu standardul SMV EN 14918:2012. A fost măsurată puterea calorifică superioară a probelor cu umiditatea 0 în bomba calorimetrică LAGET MS – 10A, iar cea inferioră a fost stabilită prin relația:

\[
NCV = GCV - 24,42 \times (8,94h + w), \text{ J/g},
\]

în care GCV este puterea calorifică superioară în J/g, 24,42 reprezintă căldura de vaporizare medie a apei în J/g, iar (8,94h + w) – cantitatea de apă rezultat prin oxidarea hidrogenerului, plus umiditatea din combustibil (h este conținutul de hidrogen al mostrei în %, W indică umiditatea mostrei în %).

Conținutul de cenușă a fost stabilizat în bază uscată conform cerințelor standardului SMV EN 14775:2012. A fost folosită metoda lentă de calcinare a probelor de biocombustibil, realizată într-un cupțor electric cu mufă, la temperatura de (550 °C) timp de cel puțin 6 ore.

REZULTATE ȘI DISCUȚII

Pentru argumentarea utilității și semnificației tipurilor de biomasă luate în studiu, în prima etapă a cercetărilor se prezintă o analiză succintă a acestora.

Topinamburul (*Helianthus tuberosus*) (Fig. 1a), care în popor mai este numit și măr-de-pământ, para-pământului, guli, nap porces, morcovul pământului, morcov-porces, cartoful ciorii, pere-înnetate, cartoful sâracilor este o plantă erbacee, perenă din familia *Asteraceae*, aparținând genului *Helianthus*. Are tulpina erectă, cilindrică, lemnoasă, cu diametrul de 22 – 50 mm la baza solului, este ușor brâzdată în lung, aspru-părosă, înaltă de până la 4 m, ramificată în partea superioară.

Patria topinamburului este America de Nord, iar denumirea provine de la tribul amerindian *Topinambas*.

Valoarea topinamburului, atât în calitate de cultură furajeră, de legumă tehnică și cu proprietăți medicinale, cât și ca plantă energetică utilizată la obținerea biocombustibililor, se bazează pe compoziția chimică și pe potențialul productiv al plantei.

Plantele de topinambur folosesc eficient energia solară, posedând un coeficient de valorificare a energiei fotosintetice active de peste 3,5%, depășind, la acest indice, porbmul de 3 ori. Aceasta permite atingerea potențialului productiv de 150 tone masă verde și circa 200 tone tuberculi de pe un hectar. Evident, cifrele date sunt pentru recolte record. În mod obișnuit, recolta medie de pe un hectar constituie cca 35 – 50 tone masă verde și 25 tone tuberculi.

Topinamburul se înmulțește prin tuberculi. Are pretenții mici față de tipul de sol, plantele vegetează foarte bine și dau cele mai mari recolte pe soluri luto-humose de lunăcă, suficient de umede și afăinate, dar valorifică bine și solurile ușor nisipoase, chiar și nisipurile mobile. Are o mare putere de adaptare la condițiile variate de climă.
Silfia perfoliatum L. (Fig. 1b) este o plantă erbacee din familia Asteraceae, originară din America de Nord, perenă, policarpică, cu tulpină erectă în patru muchii cu perişori, în partea superioară ramificată, cu înălţimea de 2-3,5 m și grosimea la bază de 20 - 40 mm. Dezvoltă un sistem radicular pivotant cu extindere până la 3,5 m adâncime. Valorifică bine solurile umede și cele contaminate cu metale grele. Poședa o rezistență inaltă la ger și înghețuri, este moderat rezistentă la arșită și secetă. Se înmulțește prin semințe și vegetativ (bucăți de rizom, răsad).

Figura 1. Plantații de topinambur (a) și Silfia perfoliatum L. de pe lotul experimental al Grădiniții Botanice din Chișinău

La înmulțirea prin semințe, în primul an de vegetație plantele dezvoltă 12-16 frunze care formează rozeta centrală și sistemul radicular format din rizomi și rădăcini adventive subțiri și lungi. În anii următori parcurge toate fazele fenologice. La reluarea vegetației, în primele 25 - 30 zile creșterea este lentă, apoi se accelerează, formându-se ștătari care, la sfârșitul lunii mai, ating ochiul de 1,6 m. Creșterea în această perioadă este de cca 7 cm/zilnic. În perioada iulie – august, ritmul de creștere al tulpinii este mai lent, înălțimea tulpinilor la finele vegetației fiind de 2,5- 3,2 m. Recolta anuală de masă prosapte variază de la 70 până la 100 t/ha, în funcție de condițiile climaterice.

Hrîșca de Sahalîn (Polygonum sachalinense F. Schmidt) (Fig. 2a) este răspândită în flora spontană din partea de răsărit a Rusiei și nordul Japoniei, pătrundând în Europa în a doua jumătate a secolului XIX. A fost implementată în agricultură, în fosta Uniune Sovietică, pe parcursul secolului XX, datorită toleranței la factorii pedoclimaterici și productivității stabile de peste 100 tone masă prosapte. Se înmulțește prin plantarea rizomilor înrădăcinați la adâncimea de 7-10 cm.

În primul an de vegetație, din rizomii înrădăcinați se dezvoltă plante de 1,5 - 1,7 cm, cu sistem radicular pivotant, care constă dintr-o rădăcină principală și rădăcini laterale concentrate în stratul de sol de 30 cm, cu o extindere laterală de 65 - 70 cm. În anul doi, vegetația demarează odată cu stabilirea temperaturilor pozitive, manifestând un ritm de creștere foarte intensiv. Astfel, la finele lunii mai, ștătari ating înălțimea de 3 m, iar la finele vegetației – plantele pot atinge o înălțimea de 4,5 m cu diametrul, în partea de la sol, de cca 3,7 - 4,8 cm. La instalarea temperaturilor negative, pe parcursul a 10 zile frunzele cad complet, iar în decembrie – ianuarie deshidratarea ștătarilor devine accentuată, ajungând la 20% umiditate.

Iarba elefantului (Miscanthus x giganteus) (Fig. 2b) este una din plantele energetice cunoscute în lume cu o largă utilizare în bioenergetică. O răspândire mai accentuată se înregistrează începând cu anii 80 ai secolului trecut în țările din Europa de Nord și Centrală.
Ştiinţa agricolă, nr. 2 (2014)

Planta energetică Miscanthus face parte din categoria plantelor C4, foarte rezistentă și perenă, originară din regiunile tropicale și subtropicale ale Africii și Asiei de Sud. Fiind o plantă ierboasă sterilă, se înmulțește doar pe cale vegetativă, prin buciții de rizomi și plantule obținute prin cultură de țesut. Se amplasează pe terenuri profund prelucrate bine asigurate cu umiditate.

După plantare în primul an de vegetație, în condițiile Republicii Moldova, atinge înălțimea de 1,2-1,5 m, cu un conținut înalt de frunze. În următorii ani, pe parcursul lunii aprilie demarează vegetația și până la finele ei atinge înălțimea de 3,0 m, conținutul de frunze fiind sub 20%. Deshidratarea țesuturilor la stabilirea temperaturilor negative se acceleră, astfel că pe parcursul lunii decembrie poate începe recoltarea biomasei. La vârsta de 3-4 ani a plantăii, productivitatea de biomase uscată atingă 14,2 – 16,3 t/ha, iar densitatea în vrac a biomasei recoltate constituie 138 kg/ m3. După primul an, de regulă, nu este necesară tratarea plantelor sau îngrijirea terenului.

Salcia energetică (Salix viminalis) este un gen de plantă din familia Salicaceae, cu crestere rapidă (cca 3 - 3,5 cm/zi). Realizează 1 - 3 lăstari și ajunge la 2 - 3 m înălțimea deja în primul an.

Ulterior, salcia continuă să se dezvolte rapid, ajungând la 10 - 15 lăstari și la o înălțime de până la 6 - 7 m în al doilea an de viață. Prima recoltare a plantei poate fi realizată deja în anii 2 - 3 de vegetație, recolta atingând o valoare de până la 30 t/ha, cu umiditatea de 35 - 40%.

În Republica Moldova, prima plantăță-test de salcie energetică a fost înființată la Bozieni, raionul Hâncești (Fig. 3).

Salcia energetică de specie Tordis provine din încrucișarea speciilor Tora și Ulv. Această specie se caracterizează printr-o creștere rapidă și posesă rezistență sporită la secetă și temperaturi înalte. În primul an de vegetație ea atinge înălțimea de până la 4 m.

Salcia energetică Inger provine din încrucișarea speciei de salcie din Rusia de tip Salix Triandra, din regiunea Novosibirsk, cu specia Jorr. Avantajele acestei specii sunt rezistența sporită la temperaturi joase și neprențiozitatea pe timpuri de secetă.

Prelucrarea biomasei lignocelulozice în procesul de obținere a biocombustibililor solizi are loc în mai multe etape (operații) tehnologice care, într-o măsură sau alta, influențează calitatea produsului finit. Dirijarea calității în aceste etape prezintă subiecte de cercetare aparte și depinde de respectarea perfecță a tuturor regimurilor tehnologice pe parcursul întregului itinerar. Calitatea produsului finit este, de asemenea, semnificativ influențată de calitatea materiei prime, în cazul nostru de calitatea biomasei.

Printre proprietățile cele mai importante care definesc calitatea biocombustibililor solizi se regăsesc puterea calorifică și conținutul de cenusă. Se știe că puterea calorifică a biomasei lignocelulozice depinde de conținutul de lignină, celuloză și hemiceluloză, adică de conținutul de oxigen, hidrogen și carbon și raportul acestor elemente (Marian, Gr. 2014). Cu cât raportul O/C și H/C este mai mic, cu atât puterea calorifică este mai mare. Conținutul de carbon în lignină este mai mare ca în celuloză și hemiceluloză, prin urmare și puterea calorifică a ligninei este mai mare ca cea a celulozei și hemicelulozei. Anumite prin aceasta poate fi explicată puterea calorifică mai mare la biomasa provenită din salcie energetică în raport cu cea a biomasei provenite din plante erbacee (biomasa provenită din lemoase conține mai multă lignină în comparație cu biomasa provenită din reziduuri agricole și plante erbacee energetice) (Marian, Gr. 2014).

Estimarea comparativă a datelor prezentate în tabelul 1 confirmă ipotezele enunțate anterior. Astfel, biomasa obținută din salcia energetică Tordis posedă cea mai mare putere calorifică (NCV=11844,42 J/kg), urmată de biomasa provenită din salcia energetică Inger (17809,36 J/kg).

Tabelul 1. Puterea calorifică și conținutul de cenusă a diferitor tipuri de biomasea lignocelulozică

<table>
<thead>
<tr>
<th>Tip biomasă</th>
<th>Puterea calorifică în bază uscată, J/g</th>
<th>Conținutul mediu de cenusă, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>superioară</td>
<td>inferioră</td>
</tr>
<tr>
<td>Napul porosec Helianthus tuberosus</td>
<td>18568,85</td>
<td>17258,96</td>
</tr>
<tr>
<td>Silfia Silfia perfoliatum</td>
<td>17823,02</td>
<td>16513,15</td>
</tr>
<tr>
<td>Hrișca de Sahalin Polygonum</td>
<td>18735,77</td>
<td>17425,89</td>
</tr>
<tr>
<td>Mîșcântus/Larba elefantului (Miscanthus x Giganteus)</td>
<td>18683,57</td>
<td>17373,69</td>
</tr>
<tr>
<td>Salcie energetică Tordis</td>
<td>19750,30</td>
<td>18440,42</td>
</tr>
<tr>
<td>Salcie energetică Inger</td>
<td>19119,24</td>
<td>17809,36</td>
</tr>
<tr>
<td>Tulpini porumb</td>
<td>17971,54</td>
<td>16661,65</td>
</tr>
<tr>
<td>Paie de grâu</td>
<td>17973,29†</td>
<td>16663,40</td>
</tr>
</tbody>
</table>

†Puterea calorifică iarba elefantului este mai mare decât celorlalte tipuri de biomase, iar la începutul proiectului erau neconstituite într-un interval de încredere.
CONCLUZII

Cercetările noastre au demonstrat că puterea calorifică a tuturor speciilor de biomasă lignocelulozică luate în studiu permite folosirea acestora la producerea biocombustibililor solizi de clasa EN plus A1. Înăsă, după conținutul de cenușă rezultat de la ardere, toate tipurile de biomasă studiate pot fi folosite doar la obținerea biocombustibililor de clasa En-B.

Este de menționat și faptul că conținutul de cenușă rezultat la arderea biomasei din salcie energetică este aproape de limita admisibilă pentru combustibili de clasa EN plus A2, adică 1,5%. De adăugat că probele de biomasă de salcie au fost preparate din vergi virgine, de 1 - 2 ani care, după cum se știe, conțin un procentaj de lignină mai mic decât partea lemnoasă de salcie energetică cu vârstă mai mare.

În baza analizei comparative a datelor din tabelul 1 se poate afirma că, în comparație cu celelalte specii de biomasă studiate, cea obținută din salcie energetică posedă caracteristici mai relevante. În ceea ce privește, biomasă obținută din salcie energetică poate fi folosită pentru obținerea biocombustibililor solizi de clasa EN plus A2, însă pentru aceasta este necesar să se întreprindă măsuri pentru diminuarea conținutului de cenușă al produsului finit. Cel mai simplu acest lucru poate fi realizat prin formarea de compoziții cu adăos de biomasă de nuanță lemnoasă obținută din trunchiuri de copaci, reziduuri lemnoase netratate chimic etc.

REFERINȚE BIBLIOGRAFICE

Data prezentării articolului: 21.08.2014
Data acceptării articolului: 05.11.2014
MODELAREA ECONOMICO-MATHEMATICĂ A DIMENSIONĂRII TARLALELOR ŞI AMPLASAREA SORTIMENTULUIVITICOL IN EXPLUATAŢIILE ARGICOLE DIN REGIUNEA VITICOLĂ SUD

Iulia CORMAN, Dumitru HARUŢA, Roman HARUŢA
Universitatea Agrara de Stat din Moldova

Abstract. A model for locating grapevine varieties on an area of 103,74 ha (Southern wine growing region, Republic of Moldova) is described in this paper, focusing on field sizing within the limits of 4.5-35 ha. In addition to the 13 main variables reflecting the surface planted with table grape varieties (x₁₅), and the technical ones (x₁₆), and also other two variables (x₁₇, x₁₈) which allow to establish the need for normalized financial investment and consumption. Together with other restrictions, the numerical model included restrictions regarding the limits of field size. As a result of the project implementation, it is expected to produce 1051 tonnes of grapes on 15 ha, and also other two variables (x₁₇, x₁₈) which permit to establish the need for normalized financial investment and consumption. Together with other restrictions, the numerical model included restrictions regarding the limits of field size. As a result of the project implementation, it is expected to produce 1051 tonnes of grapes on 15 ha.

Key words: Grapevine; Model; Field sizing; Quantitative and qualitative criteria; Profitability

Rezumat. În acest articol este prezentat un model de amplasare a soiurilor de viță de vie pe o suprafață de 103,74 ha (regiunea viticolă Sud), punându-se accentul pe dimensionarea tarlalelor în limita 4.5-35 ha. În afara de cele 13 variabile principale, ce reflectă suprafața sădătă cu un soi sau altul de viță de vie, în problema economico-matematică, sau inclus și variabilele ce determină suprafața soiurilor de masa (x₁₅) și a celor tehnice (x₁₆), precum și două variabile (x₁₇, x₁₈) care permit de a stabili necesarul de investiții și consumuri financiare normate în această ramură. La rând cu alte restricții, în modelul numeric au fost incluse restricții privind limitarea dimensiunii tarlalelor. În rezultatul realizării proiectului vor fi produse 1051 tone de grăpini, respectiv de masa 313 tone și pentru vin 738 tone. După comercializarea producției profitul va consta în 2146 mii lei cu o rentabilitate de 124%. Investițiile alocate pentru plantare și întreținere până la intrarea pe rod vor fi de 9725 mii lei, iar consumurile financiare normative vor atinge cifra de 1717 mii lei. Modelul elaborat poate fi utilizat de producătorii de struguri din regiune viticolă Sud la dimensionarea tarlalelor, alegerea sortimentului și sporirea profitului.

Cuvinte cheie: Plantație viticolă; Model; Dimensionarea tarlalelor; Criterii cantitative și calitative; Rentabilitate

INTRODUCERE

Problemele cu care se confruntă beneficiarii terenurilor agricole în acest domeniu țin de alegerea terenului și a sortimentului optim, de argumentarea economică a cheltuielilor în dependență de condițiile pedoclimatice.

Asupra componenței speciilor și soiurilor plantărilor multianuale, după cum menționează și savantul S. Volkov (2001), influențează o multitudine de factori, precum: bilanțul suprafețelor pe tipuri de folosință, inclusiv pentru înființarea plantărilor noi de vie, asigurarea cu resurse de muncă, mijloace de producere și investiții capitale.

Estimarea acestor factori și a altor restricții privind proiectarea plantărilor viticole și selectarea sortimentului este posibilă prin utilizarea modelelor economico-matematiche, cu aplicarea tehnologiilor informaționale.

Realizarea direcțiilor menționate este posibilă în cazul elaborării proiectului pe masive integrale, prin dimensionarea optimă a tarlalelor și determinarea sortimentului cu justificarea economică a cheltuielilor.
La elaborarea proiectului de amenajare a plantațiilor viticole, concomitent cu alte metode tradiționale, este rațional să se utilizeze modelele matematice, care ne oferă posibilitatea de a alege variantă optimă în dependență de condițiile și factorii caracteristici pentru sectoarele proiectate.

În condițiile economiei de piață, intensificării agriculturii și reformelor funciare, o deosebită atenție revine folosirii eficiente a fondului funciar, dar care necesită rezolvarea mai multor probleme de ordin tehnic, economic, social în baza calculelor matematice.

Utilizarea modelelor matematico-economice orientează activitatea exploatarii agricole spre dezvoltare stabilă în perspectivă, această metodă actualmente constituind un sistem în baza căruia se estimează variantă optimă a sortimentului, prin compararea elaborărilor de proiect conform criteriilor cantitative și calitative.

Modelul economico-matematic

Funcția-obiectiv – profitul maxim obținut în rezultatul comercializării strugurilor:

\[Z_{\text{max}} = \sum_{j=1}^{J} c_j x_j, \]

în următoarele restricții:

1. Utilizarea terenului destinat pentru plantarea soiurilor viticole omologate:

\[\sum_{j=1}^{J} x_j = S \]

2. Ponderea minimă/maximă a suprafeței destinate soiurilor pentru vin în suprafața totală de viță-de-vie:

\[\alpha^\text{min}_j \cdot S \leq \sum_{j=1}^{J} x_j \leq \alpha^\text{max}_j \cdot S \]

3. Ponderea minimă/maximă a suprafeței destinate soiurilor de masă în suprafața totală de viță-de-vie:

\[\beta^\text{min}_j \cdot S \leq \sum_{j=1}^{J} x_j \leq \beta^\text{max}_j \cdot S \]

4. Ponderea minimă/maximă a grupelor de soiuri pentru vin timpurii, medii, târziu în suprafața totală a soiurilor pentru vin:

\[\alpha^\text{min}_i \cdot S' \leq \sum_{j=1}^{J} x_j \leq \alpha^\text{max}_i \cdot S' \]

5. Ponderea minimă/maximă a grupelor de soiuri de masă timpurii, medii, târziu în suprafața totală a soiurilor de masă:

\[\beta^\text{min}_i \cdot S' \leq \sum_{j=1}^{J} x_j \leq \beta^\text{max}_i \cdot S' \]

6. Dimensiunea minimă a suprafeței tarlalelor:

\[\sum_{j=1}^{J} x_j \geq S^\text{min} \]

7. Dimensiunea maximă a suprafeței tarlalelor:

\[\sum_{j=1}^{J} x_j \leq S^\text{max} \]

8. Utilizarea rezervei de investiții:

\[\sum_{j=1}^{J} k_j x_j \leq k, (i \in I_1) \]

9. Utilizarea rațională a rezervei resurselor de producție limitate:

\[\sum_{j=1}^{J} a_j x_j \leq b, (i \in I_2) \]

10. Utilizarea rațională a resurselor de forță de muncă în perioadele de vârf:
\[\sum_{j \in J} a_{j} x_{j} \leq b_{i}, (i \in I_{1}) ; \]

11. Producerea cantității necesare de struguri în total, inclusiv pe grupe de soiuri și soiuri aparte:
\[\sum_{j \in J} w_{j} x_{j} \geq Q_{j}, (j \in J) ; \]

12. Ecuatia de balanță pentru determinarea unor indicatori în procesul soluționării problemei:
\[\sum_{j \in J} a_{j} x_{j} = x_{i}, (i \in I_{4}) ; \]

13. Văriabilele nu pot primi valori negative:
\[x_{j} \geq 0, (j \in J); x_{i} \geq 0, (i \in I_{4}) . \]

În modelul matematic sunt acceptate următoarele semne convenționale:
- \(j \) – numărul variabilei;
- \(J \) – mulțimea de elemente ce indică suprafața sădită cu soiuri viticole;
- \(J_{v} \) – mulțimea de elemente ce indică suprafața sădită cu soiuri viticole pentru vin;
- \(J_{m} \) – mulțimea de elemente ce indică suprafața sădită cu soiuri viticole de masă;
- \(J_{i} \) – mulțimea de elemente ce indică suprafața sădită cu soiuri viticole pentru vin timpurii, medii, târzi;
- \(J_{t} \) – mulțimea de elemente ce indică suprafața sădită cu soiuri viticole de masă timpurii, medii, târzi;
- \(J_{s} \) – mulțimea de elemente ce indică suprafața minimă a tarlalelor;
- \(J_{b} \) – mulțimea de elemente ce indică suprafața maximă a tarlalelor;
- \(i \) – numărul restricțiilor;
- \(I \) – mulțimea de elemente ce indică numărul restricțiilor;
- \(I_{1} \) – mulțimea de elemente ce indică numărul restricțiilor ce se referă la utilizarea rezervei de investiții;
- \(I_{2} \) – mulțimea de elemente ce indică numărul restricțiilor ce se referă la utilizarea resurselor de producție limitate;
- \(I_{3} \) – mulțimea de elemente ce indică numărul restricțiilor ce se referă la utilizarea resurselor de forță de muncă în perioadele de vârf;
- \(I_{4} \) – mulțimea de elemente ce indică numărul restricțiilor ce se referă la determinarea unor indicatori;
- \(X_{j} \) – suprafața sădită cu soiuri viticole \((j \in J)\);
- \(X_{v} \) – suprafața sădită cu soiuri pentru vin \((j \in J_{v})\);
- \(X_{m} \) – suprafața sădită cu soiuri de masă \((j \in J_{m})\);
- \(X_{t} \) – suprafața sădită cu soiuri pentru vin timpurii, mijlocii, tardive \((j \in J_{t})\);
- \(X_{s} \) – suprafața sădită cu soiuri de masă timpurii, mijlocii, tardive \((j \in J_{s})\);
- \(X \) – valoarea unor indicatori ce se determină în procesul soluționării problemei (aici pot fi determinate și volumul investițiilor resurselor de forță de muncă în unele perioade de vârf etc.);
- \(c \) – profitul calculat la 1 ha al soiului respectiv;
- \(S \) – suprafața totală destinată pentru șâdirea viței-de-vie;
- \(S_{\text{min}} \) – suprafața minimă a tarlalelor;
- \(S_{\text{max}} \) – suprafața maximă a tarlalelor;
- \(\alpha_{j}^{\text{min}}, \alpha_{j}^{\text{max}} \) – pondearea minimă/maximă a suprafeței soiurilor pentru vin în cea totală de vii;
- \(\beta_{j}^{\text{min}}, \beta_{j}^{\text{max}} \) – pondearea minimă/maximă a suprafeței soiurilor de masă în cea totală de vii;
- \(\beta_{g}^{\text{min}}, \beta_{g}^{\text{max}} \) – pondearea minimă/maximă a suprafeței soiurilor timpurii, mijlocii și tardive în suprafața soiurilor pentru vin;
- \(k_{j} \) – volumul total de investiții;
- \(k_{v} \) – cantitatea de investiții în calcul la 1 ha a soiului - j;
- \(b \) – rezerva resursei de producție de tipul - i;
- \(a_{j} \) – norma de consum a resursei de producție de felul-i în calcul la 1 ha a soiului-j;
bi – rezerva resursei de forță de muncă în perioadele de vârf;
aij – norma de consum a resurselor de muncă în perioadele de vârf la 1 ha a soiului-j;
Q – planul de producere a strugurilor de soi-j;
Wj – recolta de struguri de pe 1 ha a soiului-j;
aij – valoarea indicatorului în calcul la 1 ha a soiului-j.

Sistemul de variabile include grupa principală, care reflectă suprafața totală a plantăției viticole, inclusiv a tarlalelor, și grupa complementară, care determină indicatorii cantitativi (necesarul de investiții capitale și consumurile financiare normative).

Seturile de restricții ale modelului se alcătuiesc în baza factorilor care influențează deciziile de proiect și sunt expuse în modelul economico-matematic elaborat pentru acest proiect.

Modelul matematic modificat a fost elaborat în baza datelor pedoclimaterice a exploatațiilor agricole din regiunea viticolă de Sud. Pentru soluționarea problemei, la calculator, a fost pregătită următoarea informație: enumerarea soiurilor viticole omologate care pot fi cultivate în condițiile concrete ale obiectului de modelare (Catalogul soiurilor de plante, 2014); suprafața terenului destinat pentru plantarea viilor; rezerva resurselor de producție limitată; volumul investițiilor; fișele tehnologice pentru cultivarea fiecărei soi; ponderea minimă/maximă recomandată de către savanți a soiurilor pentru vin și a celor de masă, precum și timpurii, medii, târziu în suprafețele respective; suprafața minimă/maximă a tarlalelor în dependența de panta terenului și alte condiții teritoriale; planul de producere a strugurilor pe grupe de soiuri, inclusiv și pe perioada de recoltare; recolta planificată la 1 ha de soi viticol; norma de consum a resurselor de producție și a investițiilor la un calcul la 1ha; prețul de comercializare și de cost al unui chintal de struguri, profitul în calcul la 1 ha pe soiuri; diverse date din materiale normative.

În baza informației pregătite, autorii au elaborat modelul dimensionării și amplasării optime a soiurilor viticole pe suprafața de 103,74 ha situată în regiunea viticolă de Sud, utilizând rațional resursele de muncă manuale anuale – 25320 om-schimb, inclusiv în luna septembrie – 3110 și octombrie – 4430; resursele de muncă mecanizate – 4990 om-schimb, având ca scop obținerea eficienței economice sporite conform criteriului de optimizare. Necesarul de investiții pentru plantare și îngrijire până la intrarea pe rod, precum și consumurile financiare normate se vor determina în rezultatul soluționării problemei.

La alcătuirea modelului economico-matematic numeric trebuie luate în considerație recomandările savanților privind ponderea minimă/maximă a unor grupe de soiuri în suprafețele respective după cum urmează:

a) suprafața soiurilor de masă constituie 12–30% din 103,74 ha, inclusiv soiuri timpurii de masă 12–26%, medii 45–55%, târziu 23–37% din suprafața soiurilor de masă;

b) suprafața soiurilor tehnice – 70-88% din 103,74 ha, inclusiv timpurii 40–52%, medii 51–37% din suprafața soiurilor tehnice;

c) suprafața maximă recomandată a tarlalei este de 35 ha și minimă – de 4,5 ha.

Pentru a soluționa problema la calculator și a elabora proiectul optim este necesar de a descrie condițiile în formă de restricții matematice.

Modelul economico-matematic numeric (fragment):
Funția obiectivă reprezintă profitul maxim obținut de la comercializarea strugurilor:

\[Z_{max} = 36300X_1 + 26250X_2 + ... + 19950X_{13} \]

în următoarele restricții:

a) conform utilizării terenului destinat pentru amplasarea soiurilor omologate de vîță-de-vie (64,66 ha):

\[X_1 + X_2 + X_3 + ... + X_{13} = 103,74 \text{ ha} \]

b) conform utilizării raționale a rezervei resurselor de muncă manuală anuală 25320 om-schimb:

\[141X_1 + ... + 151X_{13} \leq 25320. \]

La fel se descriu și celelalte restricții ce se referă la resursele limitate. Pentru a reflecta seturile de restricții privind ponderea minimă/maximă a suprafețelor unor grupe de soiuri în suprafețele respective, determinăm:

c) suprafața sădită cu soiurile de masă prin \(X_{14} \):

\[X_1 + X_2 + ... + X_9 = X_{14}; \]

d) conform limitărilor suprafaței sădite cu soiurile de masă nu mai puțin de 12% din 103.74 ha:

\[X_{14} \geq 0.12 \times 103.74 \text{ ha} \]
e) la fel nu mai mult de 30% din 103.74 ha:

\[X_{14} < 0.3 \times 103.74 \text{ ha.} \]

Analogic se descrie setul de restricții ce se referă la ponderea minimă/maximă a suprafeței destinate soiurilor pentru vin. Următorul set de restricții reflectă producerea cantității necesare a strugurilor pe grupe de soiuri, inclusiv pe soiuri aparte, descrierea se efectuează ca în problemele precedente. Datele se transcriu în matrice. Rezultatele modelului obținut sunt prezentate în tabelul 1.

REZULTATE ȘI DISCUȚII

Modificarea modelului economico-matematic a fost elaborată în baza datelor caracterizante pentru exploatațiile agricole din regiunea viticolă Sud.

În model au fost incluse 13 variabile cu referință la suprafața pentru plantarea soiurilor viticoale respective, două variabile complementare \(X_{14} \), \(X_{15} \) care determină suprafața destinată soiurilor de masă și tehnice, precum și două variabile \(X_{16} \), \(X_{17} \) care determină necesitatea de investiții capitale pentru realizarea proiectului până la intrarea pe rod a plantăței.

Asupra variabilelor au fost suprapuse 36 de restricții, inclusiv și cele care limitează amplasarea soiurilor propuse în dependență de dimensiunile tarlalelor.

Estimând rezultatele obținute la calculator, pentru exploatațiile agricole din regiunea viticolă de Sud se propune componența optimă de amenajare și amplasare a soiurilor viticoale omologate:

<table>
<thead>
<tr>
<th>Soiuri</th>
<th>Suprafața conform planului optim, ha</th>
<th>Suprafața conform proiectului tradițional, ha</th>
<th>%</th>
<th>%</th>
<th>+ ; - devieri, ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. De masă, inclusiv:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timpurii:</td>
<td>31,122</td>
<td>30</td>
<td>31,12</td>
<td>30</td>
<td>+0,002</td>
</tr>
<tr>
<td>Codreanca</td>
<td>4,35</td>
<td>4,2</td>
<td>8,94</td>
<td>8,6</td>
<td>-4,59</td>
</tr>
<tr>
<td>Muscat lanternii</td>
<td>1,527</td>
<td>1,47</td>
<td>8,94</td>
<td>8,6</td>
<td></td>
</tr>
<tr>
<td>medii:</td>
<td>15,24</td>
<td>14,69</td>
<td>12,48</td>
<td>12</td>
<td>+2,76</td>
</tr>
<tr>
<td>Guzun</td>
<td>6,083</td>
<td>5,86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leana</td>
<td>9,166</td>
<td>8,83</td>
<td>12,48</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>târzi:</td>
<td>11,51</td>
<td>11,1</td>
<td>9,7</td>
<td>9,4</td>
<td>+2,11</td>
</tr>
<tr>
<td>Moldova</td>
<td>9,341</td>
<td>9,0</td>
<td>9,7</td>
<td>9,4</td>
<td></td>
</tr>
<tr>
<td>Caraburnu</td>
<td>2,174</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Pentru vin, inclusiv:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timpurii:</td>
<td>72,618</td>
<td>70</td>
<td>72,62</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Traminet</td>
<td>31,226</td>
<td>30,1</td>
<td>31,22</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>medii: Muscat de Ialoveni</td>
<td>41,392</td>
<td>39,9</td>
<td>41,4</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>103,74</td>
<td>100</td>
<td>103,74</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

CONCLUZII

În cazul înființării unei plantațiile viticoale pe suprafața de 103,74 ha cu ponderea sortimentului de soiuri optim propus, producătorii agricoli vor avea nevoie de investiții în sumă de 9725 mii lei, consumuri financiare – 1717 mii lei.

Realizarea proiectului va permite producerea a 1051 tone de struguri, inclusiv soiuri de masă – 313 tone și pentru vin – 738 tone.

În rezultatul comercializării producției, profitul obținut va constitui 2146 mii lei cu rentabilitatea de 124,9%.

Acest model de înființare a plantațiilor viticoale poate fi recomandat producătorilor de struguri din regiunea viticolă de Sud în vederea dimensionării tarlalelor și implicit îmbunătățirii profitului comercial.

REFERINȚE BIBLIOGRAFICE

Data prezentării articolului: 04.07.2014
Data acceptării articolului: 21.10.2014
CZU 637.5 6 + 691: 615.33

MICROFLORA CARCASELOR DE BOVINE, OVINE, PORCINE ȘI SENSIBILITATEA EI FAȚĂ DE UNELE ANTIBIOTICE

Ruslan ANTOCI, Nicolae STARCIUC
Universitatea Agrară de Stat din Moldova

Abstract. The scientific investigations presented in this study aimed to monitor the microbial load of cattle, sheep and pig carcasses during the commercialization period in the specialized department of the central agricultural market of Chisinau mun. The samples were collected and monitored before being placed in the department and also 24 and 48 hours after the placement. Also, the samples were collected both from the surface and the depths of the carcasses. Subsequently, from these samples, inoculations were performed on ordinary, differential and selective nutrient media in order to determine the presence and diversity of bacterial forms. Concomitantly, the morphological study of the colonies of isolated microorganisms was performed, as well as the microscopic examination of the smears prepared from the colonies of microorganisms and the sensitivity of isolated microorganisms to some antibiotics, frequently used for animal treatment, was determined. As a result of the accomplished investigations, it was determined that the colonies of microorganisms developed on all the carcasses, but a higher incidence was recorded in the samples of cattle and sheep carcasses collected 24 and 48 hours after being placed in the specialized selling department. The microscopic examination demonstrated the prevalence of bacterial forms such as E. coli and Staphylococcus. The antibiogram showed that the micro flora isolated from sheep carcasses manifested the highest sensitivity to the antibiotics florfenicol and cefazolin (the inhibition zone was of 12 and 17 mm, respectively), and the lowest sensitivity was established to ampicillin and erythromycin.

Key words: Carcasses; Microorganisms; Nutrient media; Colonies; Antibiogram; Sensitivity; Insemination

Rezumat. Investigațiile științifice reflectate în acest studiu au avut ca scop monitorizarea încărcăturii microbiene la carcasele de bovine, ovine și porcine în perioada de comercializare în halele specializate din cadrul pieței agricole centrale din municipiul Chișinău. Probele au fost prelevate dimineața, până la plasarea în hală și la 24 și la 48 de ore de la momentul plasării în hală pentru comercializare. Eșantioanele au fost prelevate atât de pe suprafața, cât și din profunzimea carcaselor. Ulterior, din eșantioanele prelevate au fost efectuate însămânțări pe medii nutritive obișnuite, selective și diferențiale în scopul stabilirii prezenței și diversității formelor bacteriene. Concomitent, s-a efectuat studiul morfologic al coloniilor de microorganism și isolat de microorganismelor și s-a determinat sensibilitatea microorganismelor izolate față de unele antibiotice mai frecvent utilizate în tratamentul animalelor. În rezultatul investigațiilor s-a stabilit că pe toate carcasele s-au dezvoltat colonii de microorganisme, însă o incidență mai înaltă a acestora a fost confirmată la probele prelevate după 24 și 48 de ore de la plasarea în hală pentru comercializare, mai semnificativ acest indice fiind la carcasele de bovine și ovine. Examenul microscopic a demonstrat prevalența formelor bacteriene specifice pentru E. coli și stafilococi. Antibiograma a demonstrat, că microflora izolată de la carcasele de ovine manifestă cea mai înaltă sensibilitate față de antibioticele florfenicol și cefazolin, (zona de inhibiție fiind de 12 și, respectiv, de 17 mm), iar cea mai mică sensibilitate a fost stabilă față de eritromicină și ampicillină.

Cuvinte cheie: Carcase; Microorganisme; Medii nutritive; Colonii; Antibiogramă; Sensibilitate; Însămânțări

INTRODUCERE

Carnea este un produs alimentar valoros care, totodată, reprezintă un mediu foarte bun pentru dezvoltarea microorganismelor, având un pH cu valori cuprinse între 6,4 și 6,5 substanțe ce o fac ușor alterabilă. Contaminarea microbiană a carcaselor animalelor poate fi de ordin extern și intern. Contaminarea de tip intern este produsă de microorganisme condiționat patogene, care sub acțiunea unor factori imunodepresanți și mărcese virulența, provoață îmbolnăvirea animalelor, se localizează în țesutul muscular și organic, iar în cazul consumului de produse pot provoca contaminarea altor animale sau a omului (Arthur, T. M. 2010; Lalande, F. et al. 2011; Serraino, A. 2012).

Această tip de contaminare poate produce și în momentul sacrificării animalelor și, anumements, la contactul cuțitului cu plaga jugulară, când pot fi antrenate microorganisme de pe suprafață pielii și părului care sunt transmise prin circulația sanguină în organism. Un alt risc de contaminare microbiană al carcaseelor poate avea loc dacă după sacrificare nu se realizează rapid răcirea și eviscerarea, ceea ce poate favoriza pâtrunderea unor
microorganisme facultativ patogene sau patogene de origine intestinală (Salmonella, Klebsiella, Listeria, Proteus, E. coli), în funcție de condițiile mediului ambiant și de condițiile igienice în perioada de procesare a carcaseelor (jupuire, eviscerare, despicare, toaletare) persistă riscul de contaminare externă care se caracterizează prin multiplicarea celulelor bacteriene din genurile Pseudomonas, Flavobacterium alcaligenes, Bacillus, Clostridium, Micrococcus etc., care pot atinge un număr de 10^-10/10^3 cm² celule la suprafața carcasei (Ivana, Simona 2011; Papadopoulou, O. 2012). Prin contaminarea externă pe carcase pot ajunge și bacterii de putrefacție care se pot dezvolta pe carne chiar și în condiții de refrigerare. În același timp, de la indivizii bolnavi, pe cale aeriannă sau prin contact cu mãinile celor care manipulează carnea, se pot transmite și microorganisme patogene (Vică, M. Laura 2010; Hariss, D. et al. 2012). Din acest considerent, scopul cercetărilor noastre a fost de a stabili prezența și tipul încărcăturii bacteriene la carcasele de bovine, ovine și porcine în perioada de comercializare, în cadrul pieței agricole centrale din municipiul Chișinău și aprecierea sensibilității microflorei izolate față de unele antibiotice mai frecvent utilizate în tratamentul animalelor bolnavce.

MATERIAL ȘI METODĂ

Investigațiile au fost efectuate la catedra Epizoootologie a facultății de Medicină Veterinară (laboratorul de microbiologie) și în laboratorul de expertiză sanitățară veterinării din cadrul pieței agricole centrale din municipiul Chișinău.

Drept obiect al investigațiilor au servit carcasele de bovine, ovine și porcine de la care au fost prelevate probe pentru a stabili prezența și diversitatea de microorganisme pe suprafața carcaseelor și în profunzimea acestora până la plasarea în hală pentru comercializare și la intervale de 24 și 48 de ore. Eșantioanele au fost prelevate în mod aleatoriu de la carcasele livrate în hală nr. 3 a câte 10 probe de fiecare specie de animale, la perioadele de colectare menționate.

Din coloniile obținute au fost pregătite frotiuri pentru studiul microscopic, colorate conform metodei clasice “Gram”.

REZULTATE ȘI DISCUȚII

În figurile 1 și 2 sunt prezentate imagini ale procesului de pregătire a probelor și a mediilor pentru efectuarea însămânațărilor de pe suprafața și din profunzimea probelor prelevate de la carcasele de bovine, ovine și porcine.

Însămânațăriile au fost efectuate cu pipeta pasteur lungă spiritieră, cu plasarea ulterioară a acestora în termostat pentru incubare. Cele mai evidente colonii ale microorganismelor au fost observate pe suprafața plăcilor Petri cu agar peptonat, la 48 de ore după plasarea în termostat. O intensitate mai evidentă (+++) a formării coloniilor a fost stabilită la probele prelevate de pe suprafața carcaseelor de ovine și porcine (Fig. 4 și 5) și altele mai puțin evidente (++ – proba recoltată de pe suprafața carcasealor de bovine (Fig. 3).

Colonii microorganismelor sunt plasate în grâmezi, au forma rotundă sau ovală și culoare surie, caracteristice pentru streptococi.

În cazul însămânațărilor pe mediul Endo, au fost observate colonii de microorganisme în probe recoltate de pe carcasele de bovine, ovine și porcine, toate având intensitatea de creștere diferită. Cea mai intensivă creștere a coloniilor de microorganisme s-a stabilit la probele recoltate de pe suprafața carcasealor de ovine (+), fiind urmată de cele ale coloniilor recoltate de pe suprafața carcasealor de porcine și bovine (+).

Coloniiile de microorganisme au dimensiuni variabile de culoare bordo-metalică, specifice pentru tipul de microorganisme E. coli.
Figura 1. Pregătirea probelor pentru însămânări

Figura 2. Aplicarea materialului de cercetat pe plăcile Petri și în eprubete

Figura 3. Coloniile de streptococi formate pe agarul peptonat din probe recoltate de pe carcasele de bovine la 48 de ore de incubare

Figura 4. Coloniile de Streptococi formate pe agarul peptonat din probe recoltate de pe carcasele de ovine la 48 de ore de incubare

Figura 5. Coloniile de streptococi formate pe agarul peptonat din probe recoltate de pe carcasele de suine la 48 de ore de incubare

Figura 6. Coloniile E. coli formate pe mediul Endo recoltate de pe carcasele de ovine la 48 de ore de incubare
În figurile 7 și 8 sunt prezentate rezultatele însămânțărilor efectuate pe agarul peptonat din probele recoltate de pe suprafața carciselor de ovine (++++) și suine (++), care sunt plasate practic pe toată suprafața tubului, cu forme rotunde și ovale, specifice pentru streptococi. N-a fost stabilită prezența coloniilor de microorganisme pe mediul bismut sulfit și mediul Saburo.

Din coloniile microorganismelor izolate ale eșantioanelor carciselor de bovine, porcine și ovine au fost preparate frotiuri, colorate după metoda clasică Gram și examinate la microscopul biologic cu dimensiunile 10x20 și 10x40.

În figurile 9 și 10 este prezentată imaginea microflorei izolate din coloniile obținute din probele carciselor examinate aleatoriu. Din aceste probe, în special din cele de pe carcasele de ovine, au fost izolate microorganismele E. coli, care sunt redate în imagine în formă de bastonase cu capetele ovale sau rotunde, de culoare roz (Fig. 9). În figura 10 este prezentată structura morfologică a streptococilor care sunt de culoare albastră, au forma rotundă și sunt plasate în formă de lanț sau mai des în grâmezi ce variază de la 3-4 la 10-20 exemplare de streptococi.

Etapa ulterioară a investigațiilor a fost axată pe aprecierea sensibilității unor antibiotice care se folosesc mai des în tratamentul animalelor de boli infecțioase în condiții de teren.

Scopul acestor investigații a fost de a stabili sensibilitatea microorganismelor din coloniile izolate de la carcasele de bovine, ovine și porcine și, totodată, pentru a stabili rezistența formelor bacteriene la...
antibioticele menționate. În special au fost folosite rondule îmbibate cu soluții de antibiotice, precum trimetoprim, neomicină, canamicină, gentamicină, florfinecol, ampicilină, eritromicina.

În figura 11 este prezentată procedura de efectuare a antibiogramei ce constă în plasarea rondulelor îmbibate cu antibioticele menționate pe plăcile petri, însămânțate cu material din coloniile izolate de la carcasele pe care s-a observat creșterea coloniilor de microorganisme.

Rondulele au fost plasate conform metodei clasice, a câte 6 pe o placă, respectând distanța uniformă dintre rondule. În rezultatul investigațiilor s-a stabilit că pe plăcile petri unde însămânțăriile au fost efectuate cu material din coloniile de microorganisme izolate de la carcasele de bovine, pe mediul Endo (Fig. 12), zona de inhibiție a microflori a variat în limitele 2-4 mm.

Pe plăcile cu mediul Endo, pe care au fost efectuate însămânțăriile cu material din coloniile obținute de la probele de ovine și suine (Fig. 13, 14), se observă că cea mai mare zonă de inhibiție a dezvoltării coloniilor de microorganisme a fost înregistrată la probele recoltate de la carcasele de ovine (Fig. 14) față de antibioticul trimetoprim ce a constituit 12 mm.
În cazul antibiogramei pe mediul Levin (Fig.15 și 16), unde însământările au fost efectuate de la probele prelevate de la carcasele de ovine și suine, zona de inhibiție a constituit 17 mm față de antibioticul florfinicol comparativ cu trimetoprimul, demonstrând totodată și cea mai înaltă sensibilitate.

CONCLUZII

Contaminarea carcasselor cu floră bacteriană este, de cele mai dese ori, de ordin extern și are loc îndată după sacrificarea animalului (în procesul de maturare a cărnii sau în timpul transportării).

Examenul microbiologic al eșanțioanelor de la carcasele de bovine, porcine și ovine a demonstrat prezența riscului de contaminare cu microfloră bacteriană, aceasta fiind mai mare la carcasele de ovine. Investigațiile bacteriologice au demonstrat prezența contaminării superfici ale carcasselor cu predominarea tipurilor de microorganisme E. coli și streptococi.

În antibiograma microflorei izolate de la carcassele de ovine cea mai înaltă sensibilitate a fost stabilită față de antibioticele florfinicol și cefazolin, având zona de inhibiție de 12 și, respectiv, de 17 mm, iar cea mai mică sensibilitate a fost stabilită față de eritromicină și ampicilină, cu valori de 2 și, respectiv, de 4 mm.

REFERINȚE BIBLIOGRAFICE

2. HARISS, D. et al., 2012. Microbiological and organoleptic characteristics of beef trim and ground beef treated with acetic acid, lactic acid, acidified sodium chlorite, or sterile water in a simulated commercial processing environment to reduce Escherichia coli O157:H7 and Salmonella. In: Meat Science, vol. 90, pp. 783-788. ISSN 0309-1740.
INFLUENȚA REMEDIULUI *APIFITOSTIMULIN* ASUPRA ACTIVITĂȚII TRANSAMINAZELOR SERICE LA OVINE

Mihail MOROZ

Universitatea Agrară de Stat din Moldova

Abstract. The aim of this paper was to argue the beneficial effect of the remedy based on bee products - *Apiphytostimulin* on the function of sheep liver. In order to achieve the intended purpose, the following objectives have been stated: to study the effect of the remedy *Apiphytostimulin* on the fermentation profile of serum transaminase and Ritis coefficient in the blood serum of sheep. The experiment included a group of 10 sheep in late gestation period, that received twice the remedy *Apiphytostimulin* (at the interval of 14 days) and other 10 sheep used as a control group. It was determined the activity of aspartate aminotransferase, alanine aminotransferase and Ritis coefficient from the blood serum. The study results demonstrated a positive effect of this remedy on the fermentation profile, especially on the liver function of animals that received the remedy, compared with the animals from the control group, which recorded liver changes specific for the sheep in late gestation period.

Key words: Sheep; Immunostimulator; Bee products; Ritis coefficient; Transaminases

Rezumat. Scopul lucrării date a fost de a argumenta acțiunea beneficiu a remediuului pe bază de produse apicole *Apiphytostimulin* asupra funcției ficatului la ovine. Pentru realizarea scopului propus se mai mențină următoarele obiective: de a studia acțiunea remediu lui *Apiphytostimulin* asupra profilului fermentativ al transaminazelor servicice și a coeficientului Ritis în serviciul sănătății ovine. Experimentul a fost supus 10 ovine aflate în ultima perioadă de gestație, câteva ore după administrarea dozei medicamentoase de la intervalul de 14 zile, remediu *Apiphytostimulin*, și 10 ovine lângă margină. În serviciul sănătății ovine a fost determinată activitatea aspartataminotransferazei, alanaminotransferazei și coeficientul Ritis. Rezultatele experimentului au demonstrat influența pozitivă a acestui preparat asupra profilului fermentativ, în special asupra funcției hepatice la animale care au primit remediu, față de animalele din lotul margină, la care au fost înregistrate modificări hepatice caracteristice ovinei în ultima perioadă de gestație.

Cuvinte cheie: Ovine; Imunostimulator; Produse apicole; Coeficientul Ritis; Transaminaze

INTRODUCERE

În domeniul zootehnic de astăzi se acordă o atenție tot mai mare surselor noi de substanțe biologice active de origine naturală (Macari, V. et. al. 2013; Balanescu, S. 2013; Moroz, M., Donica, V. 2012; Donica, N. 2008). În Republica Moldova, una dintre sursele importante de obținere a noilor preparate ecologice și relativ ieftine, constituie produsele de origine apicolă.

Pe parcursul ultimilor ani au fost întreprinse mai multe cercetări în vederea obtinerii substanțelor biologice active de origine chimică și naturală. Totodată, trebuie de menționat că datele existente în literatura de specialitate denotă continuarea și aprofundarea cercetărilor în direcția determinării potențialului local de obținere a remediilor provenite din produse apicole.

Apiphytostimulin este un remediu imunostimulator pe bază de produse apicole elaborat de colaboratorii Universității Agrare de Stat din Moldova (Usatenco, V. et al. 2009), ce se folosește pentru creșterea rezistenței nespecifice la animale (Donica, N. 2008).

Cercetările descrise în acest articol vizează acțiunea preparatului *Apiphytostimulin* asupra grupului de enzime transaminazelor sau aminotransaminazelor: aspartataminotransferaza (AST) și alanaminotransferaza (ALT). De asemenea, este descrisă dinamică coeficientului Ritis sub influența preparatului menționat.

MATERIAL ȘI METODĂ

Partea experimentală a cercetărilor s-a efectuat în gospodăria particulară de creștere a ovinei din satul Grădiște, raionul Cimișlia. Experiențelor au fost supuse 20 de oi. In lotul experimental, la a 105-a zi de gestație, animalelor (10 ovine) li s-a administrat intramuscular remediu *Apiphytostimulin* în dozi de 0,1 ml/kg masă corporală, cu repetare peste 14 zile. Ovinele din lotul margină li s-a administrat soluția fiziologică NaCl de 0,9% la același interval de timp și în același doze.

De la animalele din ambele loturi au fost preluate probe de sânge, din vena jugulară, până la administrarea preparatului, după 14 zile de la administrare și în ziua fățării.
Determinarea activității alaninaminotransferazei și aspartataminotransferazei în serul sângvin s-a efectuat prin metode standardizate cu setul de reagenți ai firmei Eliteh (Franța), conform instrucțiunilor, la laboratorul de Biochimie a Universității de Stat de Medicină și Farmacie „Nicolae Testemițanu” din Republica Moldova.

În același timp la ambele loturi de animale a fost determinat coeficientul de Ritis (raportul dintre activitatea aspartataminotransferazei și activitatea alaninaminotransferazei).

În perioada experimentelor, ovinele din ambele loturi au fost întreținute în condiții zoogienice optimale, cu o furajare suficientă și identică.

REZULTATE ȘI DISCUȚII

Rezultatele examenului serului sângvin au fost următoarele:

a) Aspartataminotransferaza (u/l). Din tabelul nr.1 rezultă că la prima investigație, la a 109-a zi de gestație, nivelul activității aspartataminotransferazei (AST) în sângele ovinei din lotul martor constituie 41,29±1,11 (u/l), iar la animalele din lotul experimental - 38,58±1,61 (u/l), ceea ce este cu 2,71 (u/l) sau cu 6,56% mai mic decât la ovinele din lotul martor (td=1,38, P>0,05), diferență fiind nesemnificativă.

Tabelul 1. Dinamica activității AST (u/l) la ovine (n=20)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Zilode investigație</th>
<th>Lotul</th>
<th>Analiza comparativă</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>La a 105-a zi de gestație</td>
<td>Martor</td>
<td>Experimental</td>
</tr>
<tr>
<td></td>
<td>M±m Td p</td>
<td>M±m Td p</td>
<td>Td p</td>
</tr>
<tr>
<td>1.</td>
<td>41,29±1,11 td=1,44 p>0,05</td>
<td>38,58±1,61 td=1,92 p>0,05</td>
<td>d=2,71(6,56%)</td>
</tr>
<tr>
<td>2.</td>
<td>La a 119-a zi de gestație</td>
<td>Martor</td>
<td>Experimental</td>
</tr>
<tr>
<td></td>
<td>M±m Td p</td>
<td>M±m Td p</td>
<td>Td p</td>
</tr>
<tr>
<td>2.</td>
<td>43,56±1,11 td=0,95 p>0,05</td>
<td>42,69±1,40 td=2,65 p>0,05</td>
<td>d=0,87(1,99%)</td>
</tr>
<tr>
<td>3.</td>
<td>În ziua fătării</td>
<td>Martor</td>
<td>Experimental</td>
</tr>
<tr>
<td></td>
<td>M±m Td p</td>
<td>M±m Td p</td>
<td>Td p</td>
</tr>
<tr>
<td>3.</td>
<td>42,53±0,68 td=0,79 p>0,05</td>
<td>44,19±1,37 td=0,76 p>0,05</td>
<td>d=1,66(3,90%)</td>
</tr>
<tr>
<td>4.</td>
<td>Diferență între perioade</td>
<td>Martor</td>
<td>Experimental</td>
</tr>
<tr>
<td></td>
<td>d1.2=2,27(5,49%)</td>
<td>d1.2=4,11(10,65%)</td>
<td>-</td>
</tr>
</tbody>
</table>

La a doua recoltare de sânge, acest indice se mărește în lotul martor în comparație cu prima investigație cu 2,27 (u/l) sau cu 5,49% (td=1,44, P>0,05). Indicele activității AST în sângele ovinei din lotul experimental, în comparație cu prima investigație, se mărește cu 4,11 (u/l) sau cu 10,65% (td=1,92, P>0,05) și constituie 42,69±1,40 (u/l). Acest indice a fost mai mic decât același indice la lotul martor cu 0,87 (u/l) sau cu 1,99% (td=0,48, P>0,05).

La a treia examinare a serului sângvin, în ziua fătării, indicele de activitate a aspartataminotransferazei la lotul martor constituie, în medie, 42,29±0,68 (u/l), ceea ce e cu 1,03 (u/l) sau cu 2,42% mai mare decât la prima investigație (td=0,68, P>0,05) și mai mic decât indicele în cazul investigației a doua - cu 1,24 (u/l) sau cu 3,00% (td=0,79, P>0,05). În același timp, activitatea AST la lotul experimental constituie 44,19±1,37 (u/l), ceea ce e cu 5,61 (u/l) sau cu 14,54% mai mare decât indicele analogic în cazul primei investigații (td=2,65, P>0,05) și cu 1,50 (u/l) sau cu 3,51% mai mare decât în investigația a doua (td=0,76, P>0,05).

Indicele activității AST în sângele animalelor din lotul experimentul a întrecut indicele respectiv la animalele din lotul martor cu 1,66 (u/l) sau cu 3,9% (td=1,08, P>0,05), diferența fiind nesemnificativă.

b) Alaninaminotransferaza (u/l). Rezultatele analizei alaninaminotransferazei sunt redate în tabelul nr. 2. Se observă că, la prima investigație, până la administrarea preparatului cercetat, activitatea ALT la animalele din lotul martor constituie 16,58±0,71 (u/l), iar la animalele din lotul experimental - 17,28±1,86 (u/l), ceea ce e cu 0,7 (u/l) sau cu 4,22% (td=0,35, P>0,05) mai mult decât în lotul martor.

La a doua investigație, în a 119-a zi de gestație, indicele activității ALT constituie la animalele din lotul martor 20,16±1,55 (u/l), ceea ce e cu 3,58 (u/l) sau cu 21,6% mai mult decât până la administrarea preparatului (td=2,09, P>0,05). Activitatea enzimei în sângele animalelor din lotul experimental constituie 18,59±0,99 (u/l), ceea ce e cu 1,41 (u/l) sau cu 8,2% mai mult decât la prima investigație (td= 0,62, P<0,05). Acest indice este mai mic cu 1,57 (u/l) sau cu 7,78% (td=0,31, P>0,05) decât indicele determinat la lotul martor.
Tabelul 2. Dinamica activității ALT (u/l) la ovine (n=20)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Zilele de investigație</th>
<th>Lotul</th>
<th>Analiza comparativă</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Martor</td>
<td>Experimental</td>
</tr>
<tr>
<td>1</td>
<td>La a 105-a zi de gestație</td>
<td>16,58±0,71</td>
<td>17,28±1,86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(td=2,09)</td>
<td>td=1,62</td>
</tr>
<tr>
<td>2</td>
<td>La a 119-a zi de gestație</td>
<td>20,16±1,55</td>
<td>18,59±0,99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(td=2,61)</td>
<td>td=1,04</td>
</tr>
<tr>
<td>3</td>
<td>În ziua fătăririi</td>
<td>23,31±2,4</td>
<td>20,08±1,93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(td=1,08)</td>
<td>td=0,68</td>
</tr>
<tr>
<td>4</td>
<td>Diferență între perioade</td>
<td>d=3,58(21,6%)</td>
<td>d=1,41(8,2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d=6,73(40,6%)</td>
<td>d=2,80(16,2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d=3,15(15,6%)</td>
<td>d=1,49(8,0%)</td>
</tr>
</tbody>
</table>

La a treia investigație, activitatea ALT în sângele ovinelor din lotul martor constituie 23,31±2,47(u/l), ceea ce este cu 3,15 (u/l) sau cu 15,6% decât la investigația a doua (td=1,08, P>0,05) și cu 6,73 (u/l) sau cu 40,6% mai mult decât la prima investigație (td=2,61, P<0,05). Acest indice a depășit indicele analogic din lotul experimental cu 3,23 (u/l) sau cu 13,85% (td=1,30, P>0,05).

Analizând activitatea enzimelor serului sanguin de la ovinele cercetate, se observă că în lotul experimental a crescut activitatea AST față de prima investigație, dar nu este o diferență semnificativă față de lotul martor în aceeași perioadă. La ovinele din lotul martor se observă o creștere semnificativă a activității ALT în ziua fătăririi față de ziua a 105-a de gestație.

La animalele domestice acest coeficient este de 1-1,5 la căini, de 1,3-1,7 la pisici, de 0,9-1,4 la bovine. La ovine acest indice diferă mult de alte animale. Conform lui Pimenov (2006) acest indice constituie la berbeci - 2,46±0,28, la ovinele gestante - 4,32±0,12 și la ovinele sterpe - 3,10, dar aceste valori nu pot fi considerate norme din cauza examinării unui număr mic de animale (Hazimuhametova, I., Bașirova, A. 2010). Cercetătoarea T.I. Latinina (2005) susține că diapazonul coeficientului Ritis la oile gestante de rasa Stavropol constituie 0,88-1,01.

Rezultatele studierii coeficientului Ritis sunt redate în tabelul nr. 3. La prima investigație, înainte de administrarea Apifitostimulinului, coeficientul Ritis în lotul martor a constituit 2,52±0,12, iar în lotul experimental - 2,38±0,20, ceea ce înseamnă că este cu 0,14 sau 5,88% mai mic decât în primul lot (td=0,60, P>0,05).

La a doua investigație, după prima administrare a preparatului, în lotul experimental coeficientul constituie 2,33±0,11, micșorându-se nesemnificativ față de prima investigație. În lotul martor acest coeficient este de 2,25±0,17 (scade nesemnificativ față de prima investigație) și cu 0,08 sau cu 3,55% mai mic ca la animalele din lotul experimental (td=0,39, P>0,05).

La a treia investigație, în ziua fătăririi, în lotul martor coeficientul Ritis se micșorează cu 0,53 sau (26,6%) față de rezultatele de la prima investigație (td=2,19, P<0,05) și cu 0,26 (13,0%) față de cele de la a doua investigație și constituie 1,99±0,21. În lotul experimental coeficientul apare iarăși aproape neschimbat față de primele valori înregistrate și constituie 2,34±0,17, ceea ce este cu 0,35 sau 17,5% mai mare decât în lotul martor.
Tabelul 3. Dinamica coeficientului Ritis la ovine (n=20)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Zilele de investigație</th>
<th>Lotul</th>
<th>Analiza comparativă</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Martor</td>
<td>Experimental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M±m</td>
<td>td</td>
</tr>
<tr>
<td>1.</td>
<td>La a 105-azi de gestație</td>
<td>2,52±0,12</td>
<td>td(_i)=1,29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p>0,05</td>
</tr>
<tr>
<td>2.</td>
<td>La a 119-azi de gestație</td>
<td>2,25±0,17</td>
<td>td(_i)=1,19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p<0,05</td>
</tr>
<tr>
<td>3.</td>
<td>În ziua fătării</td>
<td>1,99±0,21</td>
<td>td(_i)=0,96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p>0,05</td>
</tr>
<tr>
<td>4.</td>
<td>Diferența între perioade</td>
<td>d(_i)=0,27 (12,0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d(_i)=0,53 (26,6%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d(_i)=0,26 (13,0%)</td>
<td></td>
</tr>
</tbody>
</table>

Majorarea activității ALT la ovinele din lotul martor și scăderea considerabilă a coeficientului Ritis la examenul sânghel în ziua fătării demonstrează o posibilă suprasolicitation a organismului înaintea fătării la ovinele din lotul martor, ceea ce nu se observă la ovinele cărora le-a fost administrat remediu Apifitostimulin.

De asemenea, aceste date sugerează o suprasolicitation la nivelul ficatului la animalele din lotul martor, care poate fi consecință unor hepatotoxicoze, care se înregistrează frecvent la ovine în ultima perioadă de gestație (Brozos, C. et. al. 2011).

Putem spune că reacția de apărare la factorii de mediu a animalelor din lotul experimental acționează în măsură mai mică asupra proceselor biochimice din organism. Creșterea capacității de apărare a animalelor care au primit remediu Apifitostimulin este legată de intensificarea proceselor metabolice în organism și, în special, în ficat. Acțiunea pozitivă a Apifitostimulinului asupra activității funcționale a ficatului se explică prin proprietățile componentelor preparatului (miere, polen, propolis ş.a.) (Hazimuhametovă, I., Bașiurova, A. 2012).

De exemplu, niacina (acidul nicotinic) din miere și polen participă în procesele antioxidante, îmbunătățește funcțiile de detoxificare și glicogenogeneză ale ficatului. Acidul folic participă în eritropoeză, îmbunătățește activitatea funcțională a ficatului. În afară de aceasta, mierea și polenul conțin steroizi, acizi grași, gliceride, colina, acetilcolina și un șir de alte substanțe biologic active, care sunt parte componentă a mecanismelor fiziologice complexe și acțiunilor de tratament specifice organismului animal (Yildiz, O. et al. 2013).

CONCLUZII

1. Apifitostimulinul influențează pozitiv activitatea transaminazelor serice la ovinele gestante. Nivelul AST înregistrează o diferență nesemnificativă între loturi (td=1,24, P>0,05), iar nivelul ALT crește semnificativ de la o investigație la alta pe toată perioada experiențelor (td=2,61, P<0,05).

2. În perioada investigațiilor, coeficientul Ritis rămâne practic neschimbat la lotul experimental, dar scade considerabil la lotul martor - cu 17,5% față de lotul experimental, ceea ce demonstrează o posibilă suprasolicitation a funcției ficatului în ultima perioadă de gestație.

3. Acțiunea pozitivă a Apifitostimulinului asupra activității funcționale a ficatului se datorează proprietăților substanțelor componente ale acestui preparat (miere, polen, propolis).

REFERINȚE BIBLIOGRAFICE

Data prezentării articolului: 12.03.2014
Data acceptării articolului: 23.10.2014
Abstract. This paper presents the researches performed on 2 groups of 20000 broiler chickens - a control group and an experimental group – in order to assess the effect of NOACK AC PD2 product containing organic acids (acetic, lactic, propionic and formic acids). The product was administered in chickens' feed at a concentration of 3 kg/t during their entire lifetime – 42 days - till the slaughter. As a result, it was noticed a reduced chicken morbidity of 6% in the experimental group compared with 11.6% in the control group; and the lethality rate amounted to 1.9% in the experimental group and 2.7% in the control group. At the end of experiments the body weight of chickens from the experimental group was by 110 g higher than the weight of the chickens from the control group (p<0,001). The investigated biochemical indices of the broiler chickens from the experimental group recorded an increasing trend.

Key words: Broiler chickens; Prebiotic; Biochemical indices; Body weight; Morbidity rate

Rezumat: Cercetările au efectuat pe două loturi - martor și experimental - a câte 20 000 pui broiler, cu dopul de a stabili efectul produsului NOACK AC PD2, care conține acizi organici (acetic, lactic, propionic, formic). Produsul a fost administrat în jurul pitiei, pe tot parcursul perioadei de creștere a puiilor (42 zile). În rezultat, la pui din lotul experimental s-a constatat un nivel al morbidității de 6% față de 11.6% la puii din lotul martor, nivelul letalității a constituit 1.9% și, respectiv, 2.7%. Greutatea corporală constatătă la finalul experimentelor a fost cu 110 g mai mare la puii din lotul experimental față de cea a puiilor din lotul martor (P<0,001). Indicii biochimici determinați au avut o tendință de creștere la puii broiler din lotul experimental.

Cuvinte cheie: Pui broiler; Prebiotic; Indicii biochimici; Greutate corporală; Morbiditate

INTRODUCERE

Conform Uniunii Europene și Organizației Mondiale a Sănătății, siguranța alimentelor este o responsabilitate a tuturor, începând de la originea lor până în momentul în care ajung pe masă. Principiul de bază privind siguranța alimentelor este aplicarea unei abordări integrate, de tipul „de la fermă – la consumator”, care să acopere toate sectoarele lanțului alimentar – inclusiv producția de furaje, sănătatea animalelor, procesarea alimentelor (Asmarandei, V. et al. 2014).

Acizii organici sunt utilizați timp de zeci de ani în conservarea hranei pentru animale, fiind pentru protejarea alimentelor de distrugere microbiiană și fungică, fie pentru a mări efectul de conservare a hranei fermentate pentru animale, de exemplu, a silozului. Acizii organici nu sunt antibiotice, dar dacă sunt folosiți corect, împreună cu nutriția, managementul și măsurile de bio-securitate, aceștia pot fi un instrument puternic în menținerea de sănătate a tractului gastro-intestinal la păsări, favorizând îmbunătățirea performanțelor lor (Ghazalah, A. et al. 2011). Principiul acționării acizilor este de a reduce pH-ul în stomac și în intestin, astfel încât mediul intestinal este prea acid pentru creșterea bacteriană. În plus, acizii organici îmbunătățesc digestia proteinelor la tineretul animal prin stimularea secreției de enzime pancreatice (Mellor, S. 2000). E important și faptul că, în comparație cu antibioticele, aceste substanțe nu creează rezistență bacteriană (Partanen, K., Mroz, Z. 1999).

MATERIAL ŞI METODĂ

Obiectivul cercetărilor s-a axat pe influența exercitată asupra principalilor indicii de producție de către remediu NOACK AC PD2, fabricat și omologat de FF Chemicals Holand (Olanda) ce conține acizi organici (formic - 33%, acetic - 13.5%, lactic - 11%, citric - 8%).
Cercetările s-au efectuat pe puii broiler, hibridul Ros-308, pe parcursul a 42 zile, în cadrul fermei de păsări „S&D Service” din satul Step-Soci, raionul Orhei, în perioada februarie-martie 2014. Puii au fost examinați clinic și divizați în două loturi câte 20 000 de capete fiecare (lot mortar și experimental), întreținuți în două hale de producție. În alimentația puiilor din ambele loturi s-a utilizat nutreț combinat granulat standard. În dependență de vârstă, s-a modelat nivelul energetic (3005-3200 Kcal EM/Kg) și cel proteic (22,5%-19%).

În lotul experimental s-a administrat furaj cu prebioticul NOACK AC PD2, în doza de 3 kg/t furaj, dozajul recomandat de producător fiind de 2-10 kg/t furaj, până la sacrificare timp de 42 zile. În lotul mortar s-a administrat furaj fără adaos de acidifiant.

Pe parcursul derulării experimentului s-a urmărit asigurarea unui microclimat optim, a unui nivel de furajare și adăpare corespunzător. Pe parcursul cercetărilor, păsările au fost examinate permanent, înregistrându-se toate datele referitoare la evoluția consumului de furaj și a creșterii în greutate. La a 42-a zi s-au prelevat probe de sânge de la puii din ambele loturi pentru determinarea unor indicatori hematologici și biochimici.

Datele obținute au fost prelucrate statistic cu ajutorul criteriului Student. Rezultatele constituie valori medii ± eroarea standard. Pragul de semnificație prezentat este P<0,01 – 0,05.

REZULTATE ȘI DISCUȚII

Pe parcursul investigațiilor, puii din ambele loturi au fost hrăniți și întreținuți conform programului stabilit. În urma observațiilor fizionomice efectuate pe o perioadă de 42 zile nu au fost semnalate abateri, reacții adverse privind sănătatea lor. Săptămânal s-a determinat gravimetric masa corporală și s-au numărat puii care prezenta diaree (murdării la cloacă cu mase fecale). Datele prezentate în tabelul 1 reprezintă procentul de îmbolnăvire a puiilor în loturile studiate. S-a constatat un procent mai mare al morbidității la puii din lotul mortar - 11,4%, comparativ cu 6% la cei din lotul experimental. Acest lucru se datorează, probabil, mediului acid care a favorizat creșterea microflorei benefice și reducerea celei patogene, de asemenea, având și efect benefic asupra celulelor tractului gastrointestinal.

Prin administrarea unor acizi organici în dieta păsărilor cercetătorului A.A. Ghazalah (2011) a obținut un conținut cecal de lactobacili cu 4% și de coliformi cu 5,7% mai mare (p<0,01) în lotul experimental, un conținut de bacterii anaerobe mai mare în lotul mortar și un conținut similar de E. coli în ambele loturi. Cercetătorii Alshawabkeh, Kanan (2005) și Al-Natour (2003) au observat că administrarea acidifiantelor în furaje în cantități de 0,5-1,5% reduce semnificativ viabilitatea bacteriei Salmonella gallinarum. De asemenea, Garcia et al. (2007) au remarcat că puii de carne, în furajul căror au fost adăugat acizi organici, înălțimea vilozității în duoden și în jejun este mai mare cu 5.000 sau 10.000 ppm. Dalia Mansour Hamed et al. (2013) raportează că în cadrul unui experiment efectuat pe prepilețe infestate cu Salmonella Enteritidis, grupurile de păsări cărorle au fost administrați acidifianti au obținut un număr mai mic de afecțiuni gastrointestinale.

Zilnic se ducea o evidență strictă a tuturor puiilor morți. Procentul mortalității a constituit 1,9% (380 de pui) în lotul experimental și 2,7% (540 de pui) în lotul mortar. Scăderea ratei mortalității după administrarea acidifiantelor a fost observată și de A. Ghazalah (2011), E. Voinițchi (2013) și alții.

La debutul experienței, puii din ambele loturi aveau o greutate medie 43,0±0,24 g, iar la sfârșit, puii din lotul experimental, care au primit prebiotic în furaj, aveau un surplus de masă corporală egal cu 110 g (p<0,01). Greutatea medie/cap a fost de 2750±21,7 g la lotul experimental și de 2640±20,1 g la lotul mortar, diferența de 110 g (sau cu 4,2 % mai mare) între cele două loturi fiind statistic semnificativă.

În tabelul 2 sunt prezentate date referitoare la indicii biochimici analizați. S-a constatat faptul că nivelul de proteină totală la puii din lotul experimental a alcătuit 3,473±0,35 g/L și 3,481±0,41 g/L la cei
8,44 mmol/L

unor prebiotice, fapt legat de o absorbție a furajului de carnea obținută.

J.D. 1978; Voinițchi, E. 2013) comunică mai multe fapte, fapt legat de o absorbție mai ridicată la nivel de intestin a proteinei furajului.

Analiza dinamicii ureei (g/L) în serul sanguin la puii broiler a demonstrat o majorare cu 3,07% la cel martor, ceea ce ar putea constitui rezultatul unui metabolism proteic mai intensiv și al absorbției ridicate de aminoacizi. Concentrația de glucoză analizată a atins un nivel de 8,44 mmol/L în lotul experimental și de 8,39 mmol/L în cel martor.

Tabelul 1. Evoluția sporului de masă corporală (M±m, gr), valorile indicatorilor bioproductive la puii broiler

<table>
<thead>
<tr>
<th>Vârstă, zile</th>
<th>Valori de referință cross COB 500, a. 2012</th>
<th>Lot</th>
<th>Martor</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>M±m</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>20000</td>
<td>43,0±0,24</td>
<td>20000</td>
</tr>
<tr>
<td>7</td>
<td>185</td>
<td>167,0±2,3</td>
<td>180,0±1,9*</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>916</td>
<td>890±4,5</td>
<td>915,0±4,9**</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>2768</td>
<td>2640±28,3</td>
<td>2750±21,7*</td>
<td></td>
</tr>
<tr>
<td>Viabilitatea, %</td>
<td></td>
<td>-540</td>
<td>97,3</td>
<td>-380</td>
</tr>
<tr>
<td>Incidența diareei, %</td>
<td></td>
<td>11,4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Rata de conversie furaj/carne obținută</td>
<td></td>
<td>1,74</td>
<td>1,69</td>
<td></td>
</tr>
</tbody>
</table>

Legenda: *p <0,01; **p <0,001

Analiza dinamicii ureii (g/L) în serul sanguin a luat în considerare valorile de referință, iar raportul dintre cauțiunea și fosforul în hrana puilor este optim. E cunoscut faptul că metabolismul mineral joacă un rol important în menținerea stării generale de sănătate și obținerea unor performanțe mai bune (sporul în greutate și conversia furajului).

Homeostază calciului și fosforului este menținută prin mecanisme complexe, prin implicarea unor hormoni ca parathormonul și calcitonina, care au o acțiune antagonistă. Astfel, secreția parathormonului este activată în hipocalcemie și diminuată în hipercalemie. În experiența sa noastră, pe parcursul testării efectului prebioticului NOAK AC PD2 asupra unor indici ai metabolismului mineral, nu s-au înregistrat valori statistice distinctive.

Astfel, concentrația calciului în serul sanguin a alcătuit 2,81±0,60 mg/dl la puii din lotul experimental și 2,15±0,71 mg/dl la puii din lotul martor (t=0,710; p>0,05). Datele obținute se incașau în valorile de referință expuse de S. Ghergariu ș.a. (2000). Totuși e necesar de precizat că s-a intensificat funcția calcitoninei, care își exercită rolul biologic prin interacțiunea cu celule-țintă aflate în jurul nivelului sistemului osos și al rinichilor și într-o mai mică măsură la nivelul intestinului. Un alt indice, concentrația serică a fosforului, a înregistrat valori de 1,85±0,14 mg/dl la lotul de pui experimental și de 1,18±0,14 mg/dl la cel martor.

Este important faptul de a remarca că concentrația serică a fosforului la puii din lotul experimental a fost cu 0,67 mg/dl mai mare, ceea ce alcătuieste 36,2% (t=2,080; p<0,05).

Tabelul 2. Valorile indicatorilor biochimici la puii broiler tratați cu NOAK AC PD2 (M±m)

<table>
<thead>
<tr>
<th>Indici</th>
<th>Zile de cercetare</th>
<th>Loturi de animale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>Martor</td>
</tr>
<tr>
<td>Proteiină totală (g/L)</td>
<td>42</td>
<td>3,473±0,350</td>
</tr>
<tr>
<td>Uree (g/L)</td>
<td>42</td>
<td>0,67±0,23</td>
</tr>
<tr>
<td>Glucoză (mmol/L)</td>
<td>42</td>
<td>8,44±2,95</td>
</tr>
<tr>
<td>Caliu (mg/dl)</td>
<td>42</td>
<td>2,81±0,60</td>
</tr>
<tr>
<td>Fosfor (mg/dl)</td>
<td>42</td>
<td>1,85±0,29</td>
</tr>
<tr>
<td>Magneziu (mg/dl)</td>
<td>42</td>
<td>1,48±0,25</td>
</tr>
</tbody>
</table>
Un alt indice care determină profilul macromineral este concentrația de magneziu (mg/dl). Magneziul este, după potasiu, al doilea cation important din interiorul celulei, găsindu-se în toate țesuturile animale, precum și în lichidele extracelulare (Marshall, Dj. 2009). În cadrul patologiei multifactoriale rolul deficitului de magneziu ca factor de risc este dat de nivelul în care se află în c scene intens studiat. Consecințele acestui deficit pot fi observate la nivel neuromuscular, în metabolismul fosfocalcic și al potasiului, în patologia bolilor cardiovasculare și în cazul unor stări alergice (Marshall, Dj. 2009).

Concentrația serică a magneziului la puii de carne, studiați s-a aflat la un nivel de 1,48±0,25 mg/dl în lotul experimental, care a beneficat de acidifiantul NOAK AC PD2, și de 1,18±0,71 mg/dl în lotul martor. Rezultatele cercetărilor noastre relevă că nivelul magneziului determinat în cadrul ionogramei a crescut la puii din lotul experimental cu 0,3 mg/dl sau cu 20 %, fapt care demonstrează acțiunea benefică a acidifiantului. Creșterea nivelurilor de calciu și fosfor în serul sanguin produs prin suplimentarea hranei cu acizi organici se poate explică prin reducerea pH-ului tractului gastrointestinal în urma utilizării acestor acizi, ceea ce îmbunătățește absorbția mineralelor din intestin înfluxul sanguin. Rezultate similare au fost descrise de S. Boling et al. (2001). De asemenea, cercetătorii M. Abdo și A. Zeinb (2004), A. Ghazalah et al. (2011), E. Voinîci (2013), M. Kamal Azza (2014) au observat creșterea concentrației de calciu seric la puii de carne în furajul sau apa cărora a fost administrat acidifiant. Mai mult decât atât, M. Kishi et al. (1999) au menționat că acidul acetic alimentar previne osteoporoză la șobolanii ovariectomizați prin reducerea de turnover osos, deoarece îmbunătățește absorbția intestinală a calciului prin îmbunătățirea solubilizării acestuia.

CONCLUZII

Studiul dat demonstră față de importanța utilizării acizilor organici ca aditivi furajeri la îmbunătățirea performanțelor de creștere a puiilor de carne, prin acțiunea lor fiziologică în inducerea creșterii, prin activitatea unor mecanisme endogene și prin efectul lor benefic antimicrobian.

Administrarea preparatului cu coninut de acizi organici a favorizat reducerea morbidității la puii din lotul experimental, care a atins un nivel de 6% față de 11,4% în lotul martor, scăderea ratei letalității, care a constituit 1,9% în lotul experimental față de 2,7% în lotul martor, obosea, la vârsta de 42 de zile, a unei greutăți corporale cu 110 g mai mare la puii din lotul experimental față de puii din lotul martor.

Se propune ca acidifiantul NOAK AC PD2 să fie utilizat pentru stimularea apetitului la pui și pentru obinerea unui spore de greutate corporală maximă. De asemenea, produsul dat poate fi utilizat, împreună cu complexul de măsuri sanitaro-veterinare, pentru profilaxia infestării carnei de pui cu Salmonella.

REFERINȚE BIBLIOGRAFICE

Data prezentării articolului: 05.08.2014
Data acceptării articolului: 25.10.2014
IMPACTUL ACȚIUNII ANTIOXIDANȚILOR STEROIZI ASUPRA STĂRII MORFO-FUNCTIONALE A SPERMATOZOIZILOR DE COCOȘ LA CRIOCONSERVARE

I. BALAN 1, Gh. BORONCIUC 2, N. ROȘCA 2, I. MEREUȚĂ 2, V. BUZAN 2, Iu. CAZACOV 2, M. BUCARCIUC 2

1Universitatea Agrară de Stat din Moldova
2Institutul de Fiziologie și Sanocreatologie al Academiei de Științe a Moldovei

Abstract. Steroidal glycosides possess antioxidative endogenous properties on the peroxidation processes in biological products. Therefore, steroidal glycosides could represent one of the solutions for maintaining of morphological and physiological functions of spermatozoa. The researches aimed to study the influence of the steroidal glycosides as antioxidants, on cock sperm sanogenity in the cryoconservation process. The following physiological and morphological indices of sperm were assessed: the mobility, the pathological forms and acrosome integrity of spermatozoa. The obtained results established the optimal concentration of the - Lilia-H and Treozida-Lilia in the composition of synthetic media used for cock sperm cryoconservation. The antioxidative effect of the researched steroidal glycosides was confirmed by maintaining the morphological-functional status of the spermatozoa and diminution of the gamete pathology.

Key words: Cocks; Sperm; Antioxidant; Cryoconservation; Steroidal glycosides

Cuvinte cheie: Cocoși; Spermă; Atioxidant; Crioconservare; Glicozide steroide

INTRODUCERE

Glicozidele steroide reprezintă o clasă importantă de substanțe naturale din grupa saponinelor, care atrag atenția cercetătorilor datorită spectrului larg de activitate biologică și securitate ecologică. În medicina tradițională glicozidele steroide se folosesc ca preparate antiinflamatoare, fungicide, contraceptive, antibiotice și citotoxice. Este cunoscut că aceste substanțe diminuiează nivelulcolesterinei în sânge și au proprietăți cu acțiune antioxidativă. Totodată, proprietățile de stimulare a creșterii și a fitoimunității caracterizează glicozidele steroide drept adaptogeni naturali (Tolkačeva, N. et al. 2011).

Soluționarea problemei ce ține de crioconservarea spermiei animalelor domestice este strâns legată de studierea componentenilor structurali ai gametilor. În acest sens, o atenție deosebită se acordă lipidelor, ca elemente necesare, integrale și esențiale ale membranelor biologice. Anume compoziția lipidică a membranelor determină un șir de funcții esențiale ale celular. Fluxitatea membranelor, clasterizarea proteinelor receptoroare, formarea și caracteristica materialului supramembranic depind de conținutul și structura lipidelor (Furdui, F. et al. 2013).

În același timp, metabolismul lipidelor, activitatea enzimelor lipiddependente, viteză proliferării și permeabilitatea membranei sunt determinate de nivelul de peroxidare a lipidelor (Boronciuc, Gh. et al. 2008; Khan, R. 2011). Dereglerile intensității acestui proces poate cauza patologii celulare și concomitent poate influența derularea mecanismelor homeostaziei structural-biochimice și a fenomenelor criodeteriorării celulelor reproductiv (Balan, I. 2013).

Reieșind din cele menționate, scopul cercetărilor efectuate a fost studierea posibilităților de menținere a proprietăților funcționale și de stabilizare a structurilor morfologice ale spermatozoizilor la folosirea antioxidantililor în componența mediilor crioprotectoare.
MATERIAŁ ȘI METODĂ

În experiențe a fost utilizată sperma de cocoș și vier, recoltată prin metodele tradiționale acceptate. Ejaculatele recoltate au fost analizate prin folosirea metodelor general acceptate pentru determinarea volumului, concentrației, supraviețuirii și mobilității, în limitele de mișcare fiziologică, a spermatozoizilor. Mobilitatea rectilinie a spermatozoizilor s-a determinat la temperatura confortogenă. Temperatura experimentală a fost reglată cu ajutorul măsuței electrice speciale a microscopului.

Crioconservarea spermii s-a realizat conform schemelor clasice de conservare, în formă de pastile la temperatura azotului lichefiat. Decongelarea spermii s-a efectuat în baia cu apă, la temperatura de 40°C.

Estimarea formelor patologice în spermă constă în determinarea numărului de spermatozoizi cu aspect anormal în rezultatul examenului morfologic al lor. Valoarea acestui indice a fost studiată prin metoda microscopiei luminiscente.

II. DISCUZIUNE

Ameliorarea fertilității masculine constituie o preocupare majoră a cercetărilor din domeniul conservării spermei de cocoș din ultimele decenii (Balan, I. 2013). Problemele de fertilitate au fost cauzate de performanța slabe ale efectului masculin sau alte factori biologici active care au impus diferențe în cazul derogării pronunțate ale homeostazei celulelor. De exemplu, antioxidanții se utilizează pentru prevenirea peroxidării lipidelor din structurile membranare ale spermatozoizilor, în care enzimele care reglează peroxidarea lipidelor au o activitate scăzută. În acest scop, în componența mediului pentru crioconservarea spermii păsărilor se folosește inhibitorul fosfohidraza și a enzimei descompunării c-adenozinmonofosfatului (c-AMP). S-a demonstrat că influența dirijată a c-AMP, una din principalele nucleotide care aparțină bioenergiei celulei pentru mobilitatea și supraviețuirea spermatozoizilor, se reflectă pozitiv asupra rezultatelor crioconservării materialului seminal (Linnik, T. et al. 2010).

În calitate de compuși antioxidanți au fost utilizate glicozidele sterioide, iar eficacitatea utilizării lor pentru crioprotectia materialului seminal de cocoș a fost prezentată conform datelor din tabelul 1.

Tabelul 1. Dinamica gametopatii și mobilitatea spermatozoizilor crioconservați de cocoș în funcție de concentrația glicozidului steroid – Lilia-H

<table>
<thead>
<tr>
<th>Nr. crt.</th>
<th>Concența antioxidanților, mg%</th>
<th>Conținutul gametopatiiilor, %</th>
<th>Mobilitatea spermatozoizilor de congelata, puncte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>5</td>
<td>27,0 ± 1,16</td>
<td>4,75 ± 0,230</td>
</tr>
<tr>
<td>2.</td>
<td>2,5</td>
<td>27,3 ± 1,60</td>
<td>4,92 ± 0,261</td>
</tr>
<tr>
<td>3.</td>
<td>1,25</td>
<td>26,5 ± 2,39</td>
<td>5,17 ± 0,183</td>
</tr>
<tr>
<td>4.</td>
<td>0,624</td>
<td>24,7 ± 1,06</td>
<td>5,58 ± 0,165</td>
</tr>
<tr>
<td>5.</td>
<td>0,312</td>
<td>23,2 ± 0,72</td>
<td>6,08 ± 0,168*</td>
</tr>
<tr>
<td>6.</td>
<td>0,156</td>
<td>23,8 ± 1,04</td>
<td>5,92 ± 0,168*</td>
</tr>
<tr>
<td>7.</td>
<td>0,078</td>
<td>25,5 ± 1,09</td>
<td>5,58 ± 0,166</td>
</tr>
<tr>
<td>8.</td>
<td>0,039</td>
<td>26,7 ± 1,05</td>
<td>5,33 ± 0,115</td>
</tr>
<tr>
<td>9.</td>
<td>0 - martor</td>
<td>26,7 ± 0,69</td>
<td>5,17 ± 0,115</td>
</tr>
</tbody>
</table>

*Diferențele sunt statistic autentice în comparație cu lotul martor.
Datele tabelului 1 denotă eficiența includerii preparatului Lilia-H la stabilizarea mobilității gameților de cocoș după decongelare. Concentrația optimă a glicozidului steroid a constituit 0,312 și 0,156 mg%. Celelalte concentrații, de la 5 până la 0,039 mg%, nu influențează mobilitatea spermei de cocoș după decongelare ei.

Este important a menționa că utilizarea produsului Lilia-H nu manifestă acțiune asupra ratei de gametopatii, ceea ce poate fi explicat prin specificul și proprietățile fizico-chimice ale antioxidanților.

Având în vedere că compoziția lipică a membranelor plasmatic determină, în mare măsură, activitatea funcțională a celulelor, iar fluiditatea membranelor, formarea și arhitectura matricelui exocelulare depind de compoziția și structura lipidelor care se supun procesului fiziologic normal de peroxidare, putem afirma că acțiunea neutră a preparatului Lilia-H asupra componentelor structurale ai gameților se încadrează în limitele fiziologice admisibile. În condiții fiziologice normale, există un echilibru adecvat între reacțiile de oxidare specifică și antioxidanții (Agarwal, A. et al. 2005).

Diminuarea concentrației antioxidanțului de la 5 mg% până la 0 mg% a contribuit la majorarea mobilității spermatozooidelor decongelate și, concomitent, la unele diminuări nesemnificative ale ei, ultimele fiind consecințe ale peroxidării lipidelor, cu producerea în mod constant a produselor care influențează negativ capacitatea de fertilizare a spermei (Surai, P. 2005).

Valoarea maximă antioxidativă s-a stabilit la utilizarea frației sumare Lilia-H în concentrație de 0,312 mg%. Utilizarea acestui preparat împreună cu compoziția mediului crioprotector pentru sperma de cocoș permite majorarea indicei de 17,6%.

Posibilitatea inducerii peroxidării lipidelor, care afectează structura și funcția membranelor celulare, a determinat studierea glicozidelor steroide concomitent cu diverse componente bioactive ale mediului sintetic pentru crioconservarea spermei de cocoș în cadrul mecanismelor de crioprotecție și criodeteriorare a spermatozooidelor.

În acest scop, cercetările privind influența compușilor bioactivi din seria „Lilia” au continuat prin studiul acțiunii substanței Treozida-Lilia în aceleasi condiții experimentale. Rezultatele sunt prezentate în tabelul 2.

Tabelul 2. Dinamica gametopatii și mobilitatea spermatozooidelor crioconservați de cocoș în cazul utilizării glicozidului steroid – Treozida-Lilia

<table>
<thead>
<tr>
<th>Nr. crt.</th>
<th>Concentrația antioxidanților, mg%</th>
<th>Contîntul gametopatii, %</th>
<th>Mobilitatea spermatozooidelor decongelate, puncte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>5</td>
<td>18,3 ± 0,46*</td>
<td>5,75 ± 0,121</td>
</tr>
<tr>
<td>2.</td>
<td>2,5</td>
<td>17,5 ± 0,68*</td>
<td>6,25 ± 0,234*</td>
</tr>
<tr>
<td>3.</td>
<td>1,25</td>
<td>18,5 ± 0,97*</td>
<td>6,08 ± 0,216</td>
</tr>
<tr>
<td>4.</td>
<td>0,624</td>
<td>20,8 ± 0,91</td>
<td>5,58 ± 0,154</td>
</tr>
<tr>
<td>5.</td>
<td>0,312</td>
<td>24,0 ± 1,50</td>
<td>5,33 ± 0,115</td>
</tr>
<tr>
<td>6.</td>
<td>0,156</td>
<td>25,8 ± 1,04</td>
<td>5,25 ± 0,112</td>
</tr>
<tr>
<td>7.</td>
<td>0,078</td>
<td>26,3 ± 0,92</td>
<td>5,42 ± 0,091</td>
</tr>
<tr>
<td>8.</td>
<td>0,039</td>
<td>27,2 ± 0,66</td>
<td>5,33 ± 0,115</td>
</tr>
<tr>
<td>9.</td>
<td>0 - martor</td>
<td>27,7 ± 0,54</td>
<td>5,42 ± 0,215</td>
</tr>
</tbody>
</table>

*Diferențele sunt statistic autentice în comparație cu lotul martor.

Datele din tabelul 2 constituie rezultate autentice privind starea morfologică și funcțională a spermatozooidelor de cocoș sub influența Treozidei-Lilia. În particular, concentrația optimă a preparatului este de 3,15 x 10^-5 g/100 ml mediu. Utilizarea acestui remediu permite de a majora mobilitatea spermatozooidelor cu mai mult de 15% comparativ cu indicii analogici din grupul martor, unde antioxidanțul nu a fost utilizat.

În același timp, concentrația antioxidanțului în limitele 5-1,25 mg% a mișcat semnificativ numărul formelor patologice ale spermatozooidelor, de la 27,7±0,54% în lotul martor până la 17,5±0,68% în varianță experimentală ce include Treozida-Lilia în concentrație de 2,5 mg% în compoziția mediului.

Prin urmare, activitatea antioxidativă a glicozidelor steroide depinde nu numai de compoziția chimică a lor, dar, practic, și de particularitățile specifice ale obiectului supus crioconservării.

Astfel, analiza studiilor influenței glicozidelor steroide (Tab. 1, 2) asupra stării morfo-functionale a spermei de cocoș permite de a concluziona că glicozidele steroide studiate, preparatele Lilia-H și Treozida-Lilia s-au dovedit a fi deosebit de eficiente la stabilizarea integrității morfologice și activității funcționale
ale spermatozoizilor în procesul crioconservării spermei de cocoș. Remediuul Lilia-H nu a modificat semnificativ numărul gametopatilor, în schimb a produs creșterea mobilității gameților deconervați. Produsul Treozida-Lilia, la rândul său, a redus considerabil dinamica patologiilor pe de o parte, și a sporit mobilitatea recelimie a spermatozoizilor pe de altă parte. Ultimele modificări pot fi explicate în raport cu concepțiile contemporane, conform cărora peroxidarea lipidelor (POL) decurge în cazul apariției radicalilor specifici în sistemul biologic, iar formarea la oportunitatea profunde de natură biochimică și fiziologic-structurală în obiecte biologice la diferite niveluri de organizare a lor (Boronciuc, Gh. et al. 2008; Malo, C. et al. 2010b). Datorită electronilor necuplați, radicali liberi atât ai oxigenului, cât și ai lipidelor se includ în procesele biochimice și provoacă reacții nespecifice de extragere a hidrogenului din compușii chimici și, în același timp, ei servesc ca intermediarii ai inițiierii și derulării reacțiilor de oxidare a lipidelor (Misro, M. et al. 2004). Prin urmare, inhibarea acestor reacții poate fi realizată datorită interacțiunii cu radicalii de ambele forme. În conformitate cu aceasta sunt necesari antioxidanți cu o eficacitate înaltă, fapt ce a fost constatat la studierea activității antioxidante a preparatului Treozida-Lilia în procesul de crioconservare a spermei de cocoș.

Un rol semnificativ în procesul fecundării oocitelor îl are aparatul acrozomal al spermatozoizilor, cele mai sensibile structuri ale căroru sunt membranele acrozomului, care acceleră modificările de structură și compoziția lor. În legătură cu aceasta au fost efectuate experiențe cu privire la determinarea influenței glicozidelor steroide asupra proprietăților de păstrare a structurilor morfologice la nivelul acrozomului. Rezultatele cercetărilor sunt prezentate în tabelul 3.

Tabelul 3. Acțiunea glicozidelor steroide asupra integrității acrozomului spermatozoizilor congelati-decongelati de cocoș

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Denumire antioxidanțului</th>
<th>Concentrația antioxidanțului, mg%</th>
<th>Integritatea acrozomului spermatozoizilor, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lilia-H</td>
<td>0,624</td>
<td>45,8 ± 1,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,312</td>
<td>45,3 ± 1,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,156</td>
<td>45,7 ± 1,01</td>
</tr>
<tr>
<td></td>
<td>0 - martor</td>
<td></td>
<td>44,7 ± 0,46</td>
</tr>
<tr>
<td>2.</td>
<td>Treozida-Lilia</td>
<td>5,0</td>
<td>48,7 ± 1,18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,5</td>
<td>50,8 ± 1,03*</td>
</tr>
<tr>
<td></td>
<td>1,25</td>
<td></td>
<td>49,5 ± 1,14*</td>
</tr>
<tr>
<td></td>
<td>0 - martor</td>
<td></td>
<td>45,1 ± 0,34</td>
</tr>
</tbody>
</table>

* Diferența este statistică autentică în comparație cu lotul martor

Din datele tabelului 3 rezultă că după crioconservarea spermei, integritatea acrozomului spermatozoizilor de cocoș s-a păstrat cel mai bine în cazul când în componența mediului a fost inclusă substanța Treozida-Lilia în concentrații de 2,5–1,25 mg%. Aceste argumentează eficacitatea antioxidanțului menționat la stabilizarea structurilor morfologice ale spermatozoizilor de cocoș. De asemenea arată că în procesul de crioconservare a spermei de cocoș bariera fiziologică a antioxidanților poate fi derogată, ceea ce implică folosirea suplimentară a antioxidanților în componența mediilor sintetic. Analiza rezultatelor expuse permite de a amintește că antioxidanții în componența mediilor crioprotectoare inhibă peroxidarea „radicalilor” liberi din spermă. Lipidele biocomplexelor membranice sunt implicate în procesul peroxidării într-o măsură mai mică, datorită prezenței legăturilor puternice în componența structurală a biocomplexelor. La peroxidarea lipidelor din spermă pot fi prezenți radicali liberi sau lipide intercaleate în biocomplexul prin intermediul legăturilor slabe. În acest fel, probabil, se produce peroxidarea preponderentă a lipidelor și, prin urmare, peroxidarea la acest nivel este inactivată de către antioxidanți.

Astfel, rezultatele obținute permit de a aminti că antioxidanții cercetați sunt preparate eficiente pentru crioconservarea spermei. Includerea acestora în componența mediilor crioprotectoare pentru materialul seminal permite de a majora indicii fiziologici și morfologici ai spermatozoizilor deconervați.
CONCLUZII

1. Fortificarea integrității morfologice și stabilizarea funcțională a spermei de cocoș în condiții de crioconservare poate fi obținută prin utilizarea în calitate de crioprotector a glicoizdelor steroide Lilia-H și Treozida-Lilia.

2. S-a stabilit că dintre glicoizdele steroide studiate, cel mai eficient la stabilizarea integrității morfologice și activității funcționale ale spermatozoizilor în procesul criouzaii spermei de cocoș s-a dovedit a fi Treozida-Lilia, care a redus considerabil dinamica patologiilor și a sporit mobilitatea rectiliniie a spermatozoizilor.

3. Concentrația optimă a glicoizdelor steroide studiate în componența mediilor pentru crioconservarea spermei de cocoș diferă semnificativ, ceea ce determină variabilitatea activității antioxdiative a lor.

4. Antioxidanții utilizați ca substanțe biologic active în procesul criouzaii manifestă proprietăți selective privind stabilizarea indicilor morfo–funcționali ai spermatozoizilor de cocoș, în conformitate cu doza și durata de acțiune a lor.

5. Procesul de crioconservare a spermei de cocoș poate deregla bariera fiziologică a proceselor antioxidative, ceea ce predetermină folosirea suplimentară a antioxidanților în componența mediilor sintetice.

REFERINȚE BIBLIOGRAFICE

7. MALO, C. et al., 2010. Anti-oxidant supplementation improves boar sperm characteristics and fertility after cryopreservation: Comparison between cysteine and rosemary (Rosmarinus officinalis). In: Cryobiology, vol. 61, no. 1, pp. 142-147. ISSN 0011-2240.

Data prezentării articolului: 25.08.2014
Data acceptării articolului: 12.11.2014
БИОСИНТЕЗ КОМПОНЕНТОВ МОЛОКА У КОРОВ И ЕГО ЗАВИСИМОСТЬ ОТ СПЕКТРА МЕТАБОЛИТОВ-ПРЕДШЕВЕННИКОВ

1 В.Б. РЕШЕТОВ, 1 А.И. ДЕНЬКИН, 1 В.И. АГАФОНОВ, 1 М.В. СОРОКИН, 2 В.О. ЛЕМЕШЕВСКИЙ

1 ВНИИ физиологии, биохимии и питания сельскохозяйственных животных, г. Боровск, Россия
2 Полесский государственный университет, г. Пинск, Республика Беларусь

Abstract. Based on the stoichiometry and thermochemical characteristics of the biosynthesis description it was calculated the energy expenditure necessary for the final stages of biosynthesis of the major milk constituents (lactose, protein and fat). The theoretical analysis indicated that the energy expended for the biosynthesis of fatty acids of milk triglycerides depends on the used precursors’ spectrum. It was supposed that the similar mechanism explains the decrease of the energy efficiency in the milk components synthesis, while milk productivity increases. Another supposition was that simultaneously, there is an increase of the energy expenditure for the homeostatic maintenance.

Key words: Cows; Metabolite precursors; Arteriovenous difference; Milk biosynthesis; Lactose; Glycerin; Milk fat

Реферат. На основе стехиометрии и термохимических характеристик реакций биосинтеза вычислены затраты энергии на конечных этапах биосинтеза важнейших компонентов молока (лактоза, белка и жира). Показано, что затраты энергии при биосинтезе жирных кислот триглицеридов молока зависят от спектра использованных предшественников. Выказано предположение, что снижение энергетической эффективности синтеза компонентов молока с ростом молочной продуктивности объясняется аналогичными механизмами. Возможно, при этом возрастают и энергетические затраты на поддержание гомеостаза.

Ключевые слова: Коровы; Метаболиты предшественники; Артерио-венозная разница; Биосинтез молока; Лактоза; Глицерин; Молочный жир

ВВЕДЕНИЕ

Вероятно, что для повышения эффективности использования корма, особенно при высокой продуктивности, целесообразно обеспечивать организм веществами, требующими меньшей затрат энергии на их трансформацию в процессе использования. Соответственно, при этом возможно снижение затрат энергии – доминирующего по дефицитности компонента при кормлении высокопродуктивных коров. Одновременно имеет значение и снижение затрат на поддержание гомеостаза организма. Учитывая большой объем питательных веществ, используемых коровами, эти затраты могут быть весьма существенными (Решетов, В.Б. 1998).

В описываемых исследованиях ставилась цель определить величину затрат энергии в молочной железе на конечных этапах биосинтеза компонентов молока на фоне общих затрат энергии в организме коров. Для этого на основе стехиометрии реакций биосинтеза важнейших по массе и содержанию энергии веществ молока – жира, белка и лактозы – нужно было провести теоретический расчет потребности в АТФ для биосинтеза этих компонентов и теплообразования при синтезе единицы АТФ и ее использовании (Лениндкер, А., 1976; Малер, Г., Кордес, Ю., 1970; Решетов, В.Б., 1998).
Итоговая величина, очевидно, будет несколько ниже фактических общих затрат энергии в молочной железе (теплообразования), так как расчет затрат АТФ касается лишь конечных стадий биосинтеза макрокомпонентов молока.

С использованием этой исходной теоретической базы, на примере ацетата прослежена судьба данного метаболита от всасывания из пищеварительного тракта до поглощения молочной железой из крови и использования для синтеза жирных кислот жира молока и генерации АТФ и тепла в клетках молочной железы. Последний аспект работы выполнен с учетом результатов расчета образования и расхода в организме основных (по массе и валовому содержанию энергии) субстратов на энергетические нужды всего организма.

МАТЕРИАЛ И МЕТОДЫ

Опыты проведены на трех коровах-первотелках на 2-3-м месяцах лактации. Живая масса коров в среднем равнялась 360 кг. Животные имели фистулы рубца и двенадцатиперстной кишки, через которые отбирали пробы содержимого рубца и химуса, поступающего из сложного желудка в кишечник. Для взятия проб крови выводили под кожу на «лодочку» сонную артерию.

Измерение объемного кровотока через половину молочной железы выполнено сотрудниками лаборатории физиологии и биохимии лактации с помощью ультразвукового флоуметра, датчик которого был наложен на одну из наружных срамных артерий. Общий кровоток через молочную железу принимали равным удвоенной величине кровотока через половину вымени.

Содержание животных было привязным, без прогулок. Кормление – трехкратное равными долями в 8, 13 и 20 часов. Учет остатков корма проводили ежесуточно. Поец осуществлялось из автопоилок. Доец – двукратное. Удой учитывали ежедневно, пробы молока для анализа отбирали по плану. Удой опирированных коров во время опыта составлял 9-17 кг.

В предварительном и опытных периодах животные получали одинаковый рацион, в который входили сено, злаково-бобовый силос и комбикирм, состоящий из 45 % ячменя, 20 – пшеницы, 12 – овса, 20 – подсолнечникового шрота, 1 – поваренной соли, 1 – трикальцийфосфата и 1 % – премикса (Табл. 1).

Таблица 1. Рацион коров

<table>
<thead>
<tr>
<th>Корма и показатели питательности</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td>Состав рациона</td>
<td></td>
</tr>
<tr>
<td>Сено злаковое, кг</td>
<td>3,8</td>
</tr>
<tr>
<td>Силос из злаково-бобовых многолетних трав, кг</td>
<td>20,0</td>
</tr>
<tr>
<td>Комбикирм, кг</td>
<td>6,0</td>
</tr>
<tr>
<td>В рационе содержится:</td>
<td></td>
</tr>
<tr>
<td>Сухое вещество, кг</td>
<td>13,9</td>
</tr>
<tr>
<td>Обменная энергия, МДж</td>
<td>121</td>
</tr>
<tr>
<td>Сырой протеин, г</td>
<td>1806</td>
</tr>
<tr>
<td>в том числе:</td>
<td></td>
</tr>
<tr>
<td>распадающийся, г</td>
<td>1250</td>
</tr>
<tr>
<td>нераспадающийся, г</td>
<td>556</td>
</tr>
<tr>
<td>Целлюлоза, г</td>
<td>2171</td>
</tr>
<tr>
<td>Гемицеллюлоза, г</td>
<td>2742</td>
</tr>
<tr>
<td>Лизин, г</td>
<td>913</td>
</tr>
<tr>
<td>Крахмал, г</td>
<td>2540</td>
</tr>
<tr>
<td>Сахара, г</td>
<td>450</td>
</tr>
<tr>
<td>Сырой жир, г</td>
<td>387</td>
</tr>
<tr>
<td>Фонд доступных субстратов:</td>
<td></td>
</tr>
<tr>
<td>Уксусная кислота (асетат), г</td>
<td>3135</td>
</tr>
<tr>
<td>Пропионовая кислота (пропионат), г</td>
<td>1090</td>
</tr>
<tr>
<td>Масляная кислота (бутират), г</td>
<td>570</td>
</tr>
<tr>
<td>Сумма аминокислот, г</td>
<td>1090</td>
</tr>
<tr>
<td>Сумма ВЖК, г</td>
<td>325</td>
</tr>
<tr>
<td>Глюкоза, г</td>
<td>682</td>
</tr>
<tr>
<td>Молочная кислота, г</td>
<td>320</td>
</tr>
</tbody>
</table>
В опытные периоды, кроме дачи основного рациона, коровам дополнительно ежесуточно инфузионировали через фистулы в пищеварительный тракт растворы питательных веществ (суффратов) в следующих вариантах:
1) смесь 250 г ацетата калия и 365 г ацетата натрия тригидрата – в рубец;
2) 300 г пропионовой кислоты в смеси с буферным раствором – в рубец;
3) 370 г глюкозы – в двенадцатиперстную кишку;
4) 250 г казеината натрия – в двенадцатиперстную кишку;
5) смесь 250 г казеината натрия и 200 г пропионовой кислоты.

Инфузию проводили в течение пяти дней подряд равномерно с 8-00 до 20-00. За час вводили 1 литр раствора. Вводимые за сутки суффраты в каждом варианте содержали около 4,5 МДж валовой энергии. В последний день каждого периода в 7, 11 и 16 часов методом функции брали пробы крови из сонной артерии и молочной вены.

Использование энергии и питательных веществ основного рациона определяли в обменном опыте в контрольном периоде, который был по порядку третьим после периодов с введением ацетата и пропионовой кислоты. Общий расход энергии в организме коров измеряли методом непрямой калориметрии традиционным массовым методом (Надальяк, Е.А., Агафонов, В.И., Решетов, В.Б. и др. 1986). Химический анализ образцов газа проводили с помощью аппарата Ходена. Калорийность проб кормов, молока, кала и мочи проводили с помощью адиабатического калориметра.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Потребление коровами обменной энергии с кормом колебалось от 90 до 120 МДж/сут. Использование энергии корма в расчете на голову представлено в таблице 2.

Данные об образовании за счет перерабатываемых веществ основного рациона важнейших суффратов представлены в таблице 1. Определение фонда суффратов проводилось на основе данных о составе рациона, переваривании питательных веществ в сложном желудке и кишечнике, соотношении образовавшихся в рубце ЛЖК в сочетании с показателями газоэнергетического обмена и обмена азота. Как видно из материалов таблицы, доминирующим по массе суффратом являлся ацетат.

Таблица 2. Обмен энергии у коров при потреблении основного рациона

<table>
<thead>
<tr>
<th>Показатели</th>
<th>МДж/сут</th>
</tr>
</thead>
<tbody>
<tr>
<td>Обменная энергия потребленных кормов</td>
<td>90-120</td>
</tr>
<tr>
<td>Энергия мочи</td>
<td>7,3±0,9</td>
</tr>
<tr>
<td>Теплопродукция</td>
<td>52,4±1,0</td>
</tr>
<tr>
<td>Энергия удоя</td>
<td>40,8±5,9</td>
</tr>
</tbody>
</table>

В таблице 3 представлены результаты расчета использования (окисления) отдельных суффратов в энергетическом обмене.

Таблица 3. Использование суффратов в энергетическом обмене коров, г/сут

<table>
<thead>
<tr>
<th>Период опыта</th>
<th>Азотсодержащие вещества</th>
<th>Ацетат</th>
<th>Глюкоза</th>
<th>ВЖК и кетоновые тела</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контрольный</td>
<td>427</td>
<td>1546</td>
<td>327</td>
<td>113</td>
</tr>
<tr>
<td>Инфузия ацетата</td>
<td>376</td>
<td>1420</td>
<td>278</td>
<td>565</td>
</tr>
<tr>
<td>Инфузия пропионовой кислоты</td>
<td>278</td>
<td>1461</td>
<td>310</td>
<td>500</td>
</tr>
<tr>
<td>Инфузия глюкозы</td>
<td>350</td>
<td>1509</td>
<td>366</td>
<td>663</td>
</tr>
<tr>
<td>Инфузия казеина</td>
<td>444</td>
<td>1811</td>
<td>304</td>
<td>371</td>
</tr>
<tr>
<td>Инфузия казеина и пропионовой кислоты</td>
<td>448</td>
<td>1790</td>
<td>354</td>
<td>458</td>
</tr>
</tbody>
</table>

При инфузии суффратов в пищеварительный тракт наиболее существенным было уменьшение по сравнению с контролем выделения азота с мочой при введении «чисто» энергетических суффратов (ациетата, пропионовой кислоты, глюкозы). Вероятно, причиной этого стало уменьшение использования для генерации энергии азотсодержащих суффратов. При введении растворов с казеиновым выделение азота с мочой, напротив, увеличивалось.

Для калькуляции расхода энергии в молочной железе при синтезе лактозы, белка и жира молока
и, следовательно, единицы молока любого состава, были проанализированы на стехиометрической
основе конечные реакции биосинтеза важнейших компонентов молока с учетом затрат макроэргов
Clark, J.H. 1976). Далее проводится обоснование использования метода калькуляции. Отдельно
анализируются подходы к определению затрат энергии при синтезе лактозы, белка и жира.

Синтез лактозы. Молекулярная масса лактозы равна 342 дальтон. При синтезе из двух
молекул глюкозы и молекулы лактозы расходуются 2 моль АТФ. Отсюда следует, что на синтез 1 г лактозы расходуется 2 (моль АТФ): 342 = 0,006 моль АТФ.

Образование и распадание АТФ при синтезе 1 г лактозы будет сопровождаться выделением
тепла, количество которого определяется следующим расчетом: 25 ккал • 2: 342 = 0,15 ккал =
0,61 кДж. Обоснованием такого расчета теплообмена при образовании и использовании
АТФ является следующие моменты. Средняя энергия макроэргической связи мол АТФ равна
10 ккал (предполагаемый размерах 8-12 ккал). Эффективность образования связи за счет энергии
окисления близка к 40 % (Иванов, К.П. 1990, 1993).

Следовательно, суммарное теплообразование при образовании и распадении мола АТФ
близко к 10: 40 • 100 = 25 ккал = 104,6 кДж. Эта величина теплообразования при синтезе и
распадении 1 моль АТФ будет использована в расчетах и далее.

Синтез белка. При расчете энергетических затрат на синтез белка исходили из следующего:
1) на синтез пептидной цепи расходуется, по меньшей мере, 3 молекулы АТФ, 2) основной белок молока
– казеин имеет молекулярную массу порядка 23000 дальтон (Сапунов, М.И., Черепанов, Г.Г. 2002), а
средняя масса аминокислотного остатка белковой цепи близка к 120 дальтон (Леняниккер, А. 1976).

Определяем, какое количество пептидных связей необходимо образовать при синтезе
молекулы казеина и какова затраты АТФ при этом: 23000 (молекулярная масса казеина): 120 –
1 = 191 связь. Далее рассчитываем количество АТФ, необходимое для синтеза 191 пептидной
связи: 3 (молекулы АТФ) • 191 = 573 молекулы АТФ. Затраты АТФ на образование одного
грамм казеина, соответственно, равны 573 : 23000 = 0,025 моль АТФ. При образовании и
использовании такого количества АТФ образуется тепла: 25 * 0,025 = 0,62 ккал = 2,62 кДж.

Синтез жира молока. Этот фрагмент расчетов является наиболее сложным и трудоемким,
вследствие многокомпонентности и вариабельности системы. В качестве исходных параметров и
допущений было взято следующее. Молочный жир на 97-98 % представлен триглицеридами, поэтому
при составлении модели субстратных потоков достаточно в первом приближении учитывать
препредшественники лишь этой группы веществ. Почти 100 % общей массы жирных кислот в
триглицеридах составляют кислоты: C_{16:0}, C_{18:0}, C_{12:0}, C_{14:0}, C_{16:1}, C_{18:1}, C_{19:0}, C_{18:2}, C_{18:3}.
Соотношение этих кислот в условиях традиционного нормированного кормления сравнительно постоянно.
Около 50 % жирных кислот жира молока синтезируется в молочной железе, вторая половина

Основными предшественниками достаточно определенных групп жирных кислот являются
бета-гидроксибутират, ацетат, жирные кислоты триглицеридов и НЭЖК плазмы крови.
Длительночные кислоты (C_{18}) считаются использоваемыми непосредственно в
неизмененном виде. Предшественниками короткоцепочечных кислот C_{4}-C_{12} являются ацетат
и бета-гидроксибутират. Кислоты C_{12}-C_{16} могут иметь двойное происхождение – синтезироваться
в железе и поступать из плазмы крови. Потребность в предшественниках может быть рассчитана
стехиометрически по количеству жирных кислот, их образующихся. Дополнительным
и контролируемым моментом являются фактические данные о соотношении поглощаемых из крови
молочной железой веществ-предшественников жирных кислот. При использовании разработанного
метода отсутствовала необходимость в идентификации кислот, предшественниками которых
были ацетат и бета-гидроксибутират. Достаточно было знать, что последний дает около 8-10 % массы
жирных кислот. Эта величина, судя по величинам артерио-венозной разницы по молочной железе
для триглицеридов и бета-гидроксибутирата, приведенным в отчете лаборатории мукофутного
обмена ВНИИФиП, близа к имеющейся в описываемых исследованиях.

Глицерин. Необходимый для синтеза триглицеридов молока, частично происходит из
поглощенных триглицеридов плазмы. Это количество поддается расчетному определению,
исходя из величины артерио-венозной разницы триглицеридов и объемного кровотока. Данные
о поглощении и использовании молочной железой свободного глицирина из плазмы крови очень скудны. Как показывают расчеты, основная масса глицирина должна быть образована из глюкозы. В связи с очень высокой (около 97%) энергетической эффективностью процесса образования глицирина из глюкозы этими загрязнениями можно пренебречь.

При синтезе жирных кислот из бета-гидроксибутиратра и ацетата путем удлинения углеродной цепи на одно присоединяемое звено требуется 1 молекула АТФ и водород двух молекул НАДФ⁺Н⁺. При расчетах принято, что молекула бета-гидроксибутиратра используется целиком. Необходимый при синтезе НАДФ⁺Н⁺ образуется, в основном, при окислении глюкозы в пентозофосфатном шунте. При этом за счет одной полностью окисленной молекулы глюкозы образуется 12 молекул НАДФ⁺Н⁺ (Малер, Г., Кордес, Ю. 1970). Синтез молекул триглицеридра из глицирина и 3-х молекул жирных кислот требует расхода 7 молекул АТФ.

Таким образом, суммарные затраты на синтез жира молока состоят из затрат на синтез части жирных кислот из ацетата и бета-гидроксибутиратра и затрат на синтез триглицеридов из глицирина и жирных кислот.

Для получения ориентировочных количественных характеристик затрат энергии на конечном этапе синтеза молочного жира был разработан методический подход для проведения соответствующих расчетов. В результате установлено, что при синтезе жирных кислот из ацетата и бета-гидроксибутиратра (в основном с короткой целью и часть кислот с C₃) на 1 г продукта расходуется около 0,024 моль АТФ. Расход АТФ в расчете на 1 г синтезированных триглицеридов молока (фактически жира молока) близок 0,020 моль, т.е. меньше, так как половина (по массе) жирных кислот (в основном группа C₁₈) поглощается из плазмы в готовом виде. Соответственно и расход НАДФ⁺Н⁺ в расчете на 1 г триглицеридов в два раза меньше, чем на синтез 1 г короткоцепочных жирных кислот.

Сравнение затрат энергии на конечном этапе синтеза лактозы, казеина и (жира) триглицеридов молока проведено в таблицах 4 и 5. По содержащимся в них данным видно, что наименьший абсолютно и относительный расход энергии на единицу массы продукта имеет место при синтезе лактозы, промежуточный — при синтезе жирных кислот и триглицеридов, максимальный — при синтезе казеина.

Таблица 4. Затраты энергии на конечном этапе синтеза компонентов молока (в расчете на 1 г)

<table>
<thead>
<tr>
<th>Компонент</th>
<th>Расход АТФ, моль</th>
<th>Расход НАДФ⁺Н⁺, моль</th>
<th>Теплообразование при синтезе и использовании АТФ, кДж</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лактоза</td>
<td>0,006</td>
<td>-</td>
<td>0,61</td>
</tr>
<tr>
<td>Белок (казеин)</td>
<td>0,025</td>
<td>-</td>
<td>2,62</td>
</tr>
<tr>
<td>Жир молока (триглицериды в среднем)</td>
<td>0,020</td>
<td>0,023*</td>
<td>2,62</td>
</tr>
<tr>
<td>Синтезированные из ацетата и бета- гидроксибутират жирные кислоты</td>
<td>0,024</td>
<td>0,046*</td>
<td>2,51</td>
</tr>
</tbody>
</table>

Примечание. Потери энергии в виде тепла при функционировании в пентозофосфатном шунте невелики (порядка 5,6%) и в расчет не принимались.

Далее рассматриваются материалы по затратам энергии и использованию ацетата молочной железы коров в проведенной серии опытов. Анализ материалов проводился по описанной выше методике.

В таблице 5 приведены материалы по величине суточного удоя и содержанию в нем основных компонентов молока. Инфузия ацетата обусловила увеличение объема синтеза молочного жира по сравнению с контролем в среднем на 94 г/сут. Инфузия только казеина и особенно казеина в сочетании с пропионатом увеличилась массу синтезированного молочного белка, по-видимому, вследствие улучшения обеспечения процессов биосинтеза как аминокислотами, так и энергией, причем в «мягком» режиме. Примечательно, что при инфузии казеина + пропионата величина кровотока через молочную железу была максимальной из всех вариантов. Инфузия только глюкозы, напротив, негативно сказалась как на величине удоя, так и на объеме синтеза молочного жира и белка. Предположительно, это является следствием как гомеоретических сдвигов кровотока, так и вклада отдельных тканей в использование субстратов. Можно ожидать, что в этих изменениях ведущую роль играют гормоны.
Таблица 5. Молочная продуктивность коров при инфузии субстратов в пищеварительный тракт

<table>
<thead>
<tr>
<th>Период опыта</th>
<th>Удой, кг/сут</th>
<th>Продукция компонентов молока, г/сут</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>молочный жир</td>
<td>Белок</td>
</tr>
<tr>
<td>Контроль (без инфузии)</td>
<td>13,4±1,4</td>
<td>478±38</td>
</tr>
<tr>
<td>Инфузия ацетата</td>
<td>13,8±2,2</td>
<td>562±39</td>
</tr>
<tr>
<td>Инфузия пропионата</td>
<td>13,4±2,1</td>
<td>472±51</td>
</tr>
<tr>
<td>Инфузия глюкозы</td>
<td>11,2±1,4</td>
<td>399±18</td>
</tr>
<tr>
<td>Инфузия казеина</td>
<td>13,1±1,4</td>
<td>434±24</td>
</tr>
<tr>
<td>Инфузия казеина и пропионата</td>
<td>13,7±1,5</td>
<td>471±19</td>
</tr>
</tbody>
</table>

Примечание. Содержание лактозы принято равным 4,2 %

В таблице 6 представлены материалы по затратам энергии на конечный этап синтеза компонентов молока. Суммарные затраты на образование веществ молока были максимальными при инфузии ацетата и минимальными – при инфузии глюкозы.

Таблица 6. Затраты энергии на конечный этап синтеза компонентов молока (теплообразование), кДж/сут

<table>
<thead>
<tr>
<th>Период опыта</th>
<th>Молочный жир</th>
<th>Белок</th>
<th>Лактоза</th>
<th>Удой в целом</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль (без инфузии)</td>
<td>999</td>
<td>996</td>
<td>343</td>
<td>2338</td>
</tr>
<tr>
<td>Инфузия ацетата</td>
<td>1174</td>
<td>1122</td>
<td>344</td>
<td>2352</td>
</tr>
<tr>
<td>Инфузия пропионата</td>
<td>834</td>
<td>899</td>
<td>287</td>
<td>2020</td>
</tr>
<tr>
<td>Инфузия глюкозы</td>
<td>907</td>
<td>1085</td>
<td>336</td>
<td>2328</td>
</tr>
<tr>
<td>Инфузия казеина</td>
<td>984</td>
<td>1163</td>
<td>351</td>
<td>2498</td>
</tr>
<tr>
<td>Инфузия казеина и пропионата</td>
<td>984</td>
<td>1163</td>
<td>351</td>
<td>2498</td>
</tr>
</tbody>
</table>

Полученные материалы по содержанию ацетата в артериальной крови и крови молочной вены в сочетании с данными о кровотоке позволили определить массу ацетата, поглощаемого молочной железой из крови (Табл. 7). Максимальный уровень ацетата в крови (1,55±0,03 ммоль/л) имел место при введении дополнительного количества ацетата в рубец.

Таблица 7. Извлечение ацетата из крови молочной железой лактирующих коров

<table>
<thead>
<tr>
<th>Период опыта</th>
<th>Объект анализа</th>
<th>Содержание ацетата, ммоль/л</th>
<th>Кровоток, л/мин</th>
<th>Извлечение, г/сут</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль (без инфузии)</td>
<td>Артериальная кровь</td>
<td>1,49±0,02</td>
<td>0,69±0,03</td>
<td>5,98±0,04</td>
</tr>
<tr>
<td></td>
<td>Кровь из молочной вены</td>
<td>0,80±0,048 г/л</td>
<td>413</td>
<td></td>
</tr>
<tr>
<td>Инфузия ацетата</td>
<td>Артериальная кровь</td>
<td>1,55±0,03</td>
<td>0,75±0,02</td>
<td>6,06±0,049 г/л</td>
</tr>
<tr>
<td></td>
<td>Кровь из молочной вены</td>
<td>0,62±0,05</td>
<td>428</td>
<td></td>
</tr>
<tr>
<td>Инфузия пропионата</td>
<td>Артериальная кровь</td>
<td>1,38±0,03</td>
<td>0,62±0,05</td>
<td>7,65±0,065 г/л</td>
</tr>
<tr>
<td></td>
<td>Кровь из молочной вены</td>
<td>0,76±0,06г/л</td>
<td>454</td>
<td></td>
</tr>
<tr>
<td>Инфузия глюкозы</td>
<td>Артериальная кровь</td>
<td>1,39±0,02</td>
<td>0,58±0,03</td>
<td>6,32±0,049 г/л</td>
</tr>
<tr>
<td></td>
<td>Кровь из молочной вены</td>
<td>0,81±0,049 г/л</td>
<td>446</td>
<td></td>
</tr>
<tr>
<td>Инфузия казеина</td>
<td>Артериальная кровь</td>
<td>1,30±0,01</td>
<td>0,54±0,02</td>
<td>6,62±0,046 г/л</td>
</tr>
<tr>
<td></td>
<td>Кровь из молочной вены</td>
<td>0,76±0,046 г/л</td>
<td>438</td>
<td></td>
</tr>
<tr>
<td>Инфузия казеина и пропионата</td>
<td>Артериальная кровь</td>
<td>1,32±0,01</td>
<td>0,55±0,01</td>
<td>7,26±0,046 г/л</td>
</tr>
<tr>
<td></td>
<td>Кровь из молочной вены</td>
<td>0,77±0,046 г/л</td>
<td>1,26</td>
<td>5,10</td>
</tr>
</tbody>
</table>

Исходный уровень до снижения уровня кормления - 5,10 -
В дополнение к описанным выше периодам опыта в течение одного дня произвели снижение уровня кормления коров путем исключения из рациона концентратов. При этом масса поглощаемого молочной жирной ацетата снизилась вдвое, преимущественно за счет снижения кровотока. Артерио-венозная разница в это время была минимальной из всех случаев, но снижение ее не было столь существенным.

При статистической обработке всего массива данных о поглощении ацетата молочной жирной выявлена достоверная положительная корреляция между концентрацией ацетата в артериальной крови и величиной артерио-венозной разницы ацетата, что свидетельствует о доминировании пассивного механизма транспорта ацетата из крови в ткани молочной железы.

Материалы об использовании молочной жирной ацетата приведены в таблице 8 для пересчета от общей массы молочного жира в массу ацетата, использованного для синтеза жировых кислот молока (такие кислоты составляют около 41,2 % от их общей массы). Использовался коэффициент 0,72. Доля ацетата, от поглощенного из крови количества, которая пошла на синтез жировых кислот липидов молока, колебалась от 64 до 95 %. Соответственно разницу между 100 % и этими величинами считали использованной на окисление.

<table>
<thead>
<tr>
<th>Таблица 8. Использование ацетата в молочной железе</th>
</tr>
</thead>
<tbody>
<tr>
<td>Период опыта</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Контроль (без инфузии)</td>
</tr>
<tr>
<td>Инфузия ацетата</td>
</tr>
<tr>
<td>Инфузия пропионата</td>
</tr>
<tr>
<td>Инфузия глюкозы</td>
</tr>
<tr>
<td>Инфузия казеина</td>
</tr>
<tr>
<td>Инфузия казеина и пропионата</td>
</tr>
</tbody>
</table>

Примечание. Поступление ацетата рассчитано по результатам обменного опыта на основном рационе (Табл. 1, 2 и 3)

Вышеизложенные материалы проиллюстрировали вариабельность энергетической эффективности синтеза компонентов молока в зависимости от спектра используемых субстратов.

Лабораторий энергетического питания за ряд лет был также получен большой массив экспериментальных данных по энергетическому обмену у коров разного уровня продуктивности. Путем статистического анализа материала более 80 обменных опытов оказалось возможным получить численную характеристику прироста затрат энергии (соответствует приросту общей теплопродукции организма) на единицу прироста энергии молока (Решетов, В.Б. 1998). Эти затраты включают в себя как теплоту, образовавшуюся при окислении органических веществ до этапа образования макроэргических связей (первичная теплота), так и теплоту, образовавшуюся после использования энергии макроэргических связей АТФ (вторичная теплота), для осуществления требующего затрат энергии биосинтеза и других процессов.

Очевидно, что общий прирост затрат энергии происходит во всем организме, особенно в органах, обеспечивающих снабжение молочной железы предшественниками веществ молока (желудочно-кишечный тракт, печень, сердечно-сосудистая система). Важно отметить, что величина прироста затрат энергии ниже при низкой молочной продуктивности и возрастает по мере ее роста. Это явление продемонстрировано в таблице 9.

По сравнению с содержанием энергии в самом приросте удоя, затраты на его образование составляют при невысокой продуктивности около 30 %, возрастая в изученном диапазоне до 58 %. Можно предполагать, что это связано с изменением спектра субстратов, используемых для синтеза веществ молока, и с возрастающими энергозатратами на сохранение гомеостаза организма. Примечательно, что отношение D (общая теплопродукция в ткахах) / D (энергия удоя) с ростом удоя постепенно уменьшается в связи с тем, что доля затрат энергии на поддержание в общей теплопродукции становится все меньше.
Таблица 9. Увеличение затрат энергии в тканях всего организма (теплообразование) в расчете на единицу прироста энергии удоя

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Энергия удоя, МДж</th>
<th>Разность (P1) между классами</th>
<th>Теплопродукция в тканиях, МДж/сут</th>
<th>Разность (P2) между классами</th>
<th>Соотношение P2/P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>--</td>
<td>--</td>
<td>54,8</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>37,7</td>
<td>--</td>
<td>80,4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>46,0</td>
<td>8,3</td>
<td>82,9</td>
<td>2,5</td>
<td>0,30</td>
</tr>
<tr>
<td>4</td>
<td>54,4</td>
<td>8,4</td>
<td>85,8</td>
<td>2,9</td>
<td>0,34</td>
</tr>
<tr>
<td>5</td>
<td>62,8</td>
<td>8,3</td>
<td>88,7</td>
<td>2,5</td>
<td>0,30</td>
</tr>
<tr>
<td>6</td>
<td>71,1</td>
<td>8,4</td>
<td>91,2</td>
<td>1,7</td>
<td>0,20</td>
</tr>
<tr>
<td>7</td>
<td>79,5</td>
<td>8,4</td>
<td>92,9</td>
<td>3,1</td>
<td>0,37</td>
</tr>
<tr>
<td>8</td>
<td>87,9</td>
<td>8,3</td>
<td>95,8</td>
<td>4,2</td>
<td>0,51</td>
</tr>
<tr>
<td>9</td>
<td>96,2</td>
<td>8,4</td>
<td>100,0</td>
<td>5,5</td>
<td>0,58</td>
</tr>
<tr>
<td>10</td>
<td>104,6</td>
<td>--</td>
<td>105,5</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

ВЫВОДЫ

В результате проведенной работы были проанализированы на стехиометрической основе конечные этапы энергетического обеспечения биосинтеза основных компонентов молока. При этом установлено, что синтез в клетках секреторного эпителия молочной железы жирных кислот из ацетата и бета-гидроксибутирата путем удлинения углеродной цепи требует значительного расхода энергии в расчете на единицу массы продукта. Эти затраты приближаются к затратам при синтезе пептидных цепей, являющихся наиболее энергоемким.

Для калькуляции затрат макроэргических связей АТФ в процессах биосинтеза компонентов молока и теплообразования при ее генерации и использовании были разработаны соответствующие алгоритмы. В комплексе они позволяют прогнозировать базисные затраты энергии при биосинтезе молока любого состава. Однако фактические затраты энергии в молочной железе выше расчетных, которые не учитывают необходимость обеспечения ряда физиологических процессов, особенно поддержания ионных градиентов. Для большего приближения результатов прогноза к фактическим величинам в дальнейших исследованиях целесообразно использование дополнительных более специфичных показателей, в частности поглощения молочной железы кислорода. Это позволит оценить объем окисления органических веществ в тканях железы.

В исследованиях была также дана количественная оценка генерации доминирующего энергетического метabolита у животных — ацетата за счет питательных веществ корма, прослежено его поглощение молочной железой из крови при варьировании условий питания и на основе проведенных разработок оценена доля ацетата, используемая для синтеза жирных кислот молока. Дополнительное введение ацетата обеспечило увеличение синтеза молочного жира.

Установленные различия в затрате энергии при синтезе веществ молока из разных предшественников позволяют предположить значение этого факта в механизме роста затрат энергии при синтезе дополнительного количества молока и при росте уровня кормления.

В целом проведенные исследования являются частью работы по созданию более совершенной системы питания животных, базирующейся на учете обеспеченности организма важнейшими субстратами. Работы в этом направлении постоянно ведутся в скандинавских странах и США. Без сомнения, данное направление можно считать прогрессивным и многообещающим в плане повышения эффективности использования кормов, сохранения здоровья коров и продления сроков их хозяйственного использования благодаря оптимизации кормления.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Data prezentării articolului: 03.08.2014
Data acceptării articolului: 03.11.2014
МОРФОЛОГИЧЕСКИЙ СОСТАВ МЯСА САМЦОВ КАБАНА, БЛАГОРОДНОГО ОЛЕНЯ, КОСУЛИ И НЕКОТОРЫХ ДОМАШНИХ ЖИВОТНЫХ

Иван КУЩИЯК
Львовский национальный университет ветеринарной медицины и биотехнологий им. С. Г. Гечаков, Украина

Abstract. The article presents the investigation results concerning the morphological composition of the male meat of feral ungulates: wild boar, deer and roe deer. The investigated meat of wild animals was compared with the meat of pig, bull and sheep. The meat of wild animals recorded a greater amount of muscle tissue than the meat of domestic animals and also less adipose tissues. As a result of investigating the meat of wild animals, it was noted a relationship between the amount of muscle and connective tissue: the less connective and adipose tissue, the more muscle tissue.

Key words: Game meat; Red deer; Roe deer; Wild boar; Pork; Mutton; Beef

Реферат. В статье изложены результаты исследований морфологического состава мяса самцов диких копытных животных: кабана, олена и косули. Исследованное мясо диких животных сравнивали с мясом свиньи, быка и барана. Мясо диких животных отмечено большее количество мышечной ткани и меньше жировой ткани, нежели в мясе домашних животных. В исследовании мясе диких копытных животных отмечалось взаимоотношение между количеством мышечной и соединительной тканей: чем меньше соединительной и жировой тканей, тем больше мышечной

Ключевые слова: Мясо диких; Благородный олень; Косуля; Кабан; Свиная; Баран; Говядина

ВВЕДЕНИЕ

Современные методы ведения сельского хозяйства, в частности откорм животных на мясо, направлены на интенсификацию выращивания животных, увеличение убойного выхода мышечной ткани, улучшение ее вкусовых свойств. С этой целью используют стойловые условия содержания, специализированные рационы, обогащенные минеральными солями, искусственно синтезированными витаминами, антибиотиками, аминокислотами. Для изготовления концентрированных кормов часто используют генетически-модифицированные растения (Власенко, В.В. 1985).

Вместе с тем, существует четкая тенденция к увеличению спроса на экологически безопасную продукцию, которая изготовлена из мяса животных, свободно проживающих в лесных угодьях. Однако отсутствие профилактики инфекционных и паразитарных заболеваний, предубойного клинического осмотра повышает риск заражения человека через такие продукты питания зооантропонозными заболеваниями (Власенко, В.В. 1984).

При изучении органолептических особенностей мяса диких копытных животных, его морфологического состава мы поставили перед собой задачу сравнить полученные результаты с такими же показателями домашних животных, найти отличия как позитивные, так и негативные.

МАТЕРИАЛ И МЕТОДЫ

Исследуемое мясо диких копытных животных (кабана, олена, косули) добывалось в Львовской, Тернопольской, Ивано-Франковской и Закарпатской областях Украины в установленных действующим законодательством сроки охоты. Из исследуемых туш были сформированы соответствующие группы по половому и возрастным признакам. К группам взрослых животных относили самцов двухгодичного возраста, к группам молодняка – в возрасте до одного года. Для сравнительной оценки использовалось мясо, полученное от забоя самцов свиней, быков крупного рогатого скота и баранов соответствующего возраста.

В зависимости от возраста и пола для определения соотношения составных частей мяса исследуемых диких животных использовали по 15 туш каждой группы животных.

Полученные результаты сравнивали с такими же показателями в мясе домашних животных по методике, предложенной Л.В. Антиповой (2001).
Цифровий матеріал оброблявся методом варіаційної статистики на персональному комп'ютері по програмі «Статистика» з використанням t-критерія Стьюдента (Лапч, С.Н., Чубенко, А.В., Бабич, П.Н.; 2000).

РЕЗУЛЬТАТИ І ОБСУЖДЕННЯ

По результатам внешнего осмотра, на шкуре оления и коулу нет жирового полива. Отложение подкожного жира можно наблюдать в незначительном количестве на участке поясницы. Жир белый с желтоватым оттенком, твердой консистенции. Внутренний жир при пальпации мягче.

Сразу после снятия шкуры поверхность туш оления и коулу светло-розового цвета. Приблизительно через 2 – 3 часа цвет мяса изменяется на темно-красный с фиолетовым оттенком. Следует отметить, что изменение цвета не останавливалось при охлаждении и замораживании туши.

Изменение цвета мышечной ткани туши диких копытных животных происходит как следствие недостаточного обесцветивания, большого количества гемоглобина в крови и гликогена в мышечной ткани. При окислении этих двух пигментов происходит изменение цвета соединения железа (Власенко, В.В. 1985). Кроме этого, вследствие испарения влаги в процессе хранения в мясе увеличивается концентрация этих двух пигментов.

На разрезе мышечная ткань оления и коулу темно-красная с фиолетовым оттенком. Для мышечной ткани обоих видов характерна мелкозернистость волокон, хотя мясо коулу на разрезе имеет более нежную структуру. Мышечная ткань оления и коулу на разрезе не имеет видимых прослоек соединительной и жировой ткани. Поэтому, в отличие от мяса домашних животных, для мяса оления и коулу незначительна так называемая «мраморность». Этот признак соответствует мышечной ткани первого сорта.

В отличие от оления и коулу, туша кабана имела сплошной жировой полив независимо от возраста животных. У самцов кабана в участке плече-лопаточного пояса отмечался салоподобные утолщения очень твердой консистенции (калкан).

Таблица 1. Морфологический состав мяса самцов кабана, благородного оления, коулу двухгодичного возраста и домашних животных, %

<table>
<thead>
<tr>
<th>Ткань</th>
<th>Кабан</th>
<th>Самец свиньи</th>
<th>Олень</th>
<th>Бык КРС</th>
<th>Самец коулу</th>
<th>Баран</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мышечная</td>
<td>70,2±2,1</td>
<td>65,1±1,5</td>
<td>79,6±3,1</td>
<td>71,2±2,3</td>
<td>76,1±1,6</td>
<td>71,9±2,3</td>
</tr>
<tr>
<td>Жировая</td>
<td>11,5±3,3</td>
<td>15,9±1,1</td>
<td>2,5±0,9</td>
<td>3,0±1,1</td>
<td>2,9±0,5</td>
<td>5,2±0,8</td>
</tr>
<tr>
<td>Соединительн.</td>
<td>9,5±0,3</td>
<td>11,3±0,6</td>
<td>2,4±0,5</td>
<td>4,5±0,6</td>
<td>5,7±0,4</td>
<td>7,1±0,5</td>
</tr>
<tr>
<td>Костная</td>
<td>8,8±1,3</td>
<td>8,1±0,6</td>
<td>15,5±2,4</td>
<td>21,5±1,2</td>
<td>15,3±0,4</td>
<td>16,1±0,3</td>
</tr>
</tbody>
</table>

*Р<0,05, **Р<0,02, ***Р<0,01, ****Р<0,001

При обвалке туш диких копытных животных нами изучался морфологический состав мяса в зависимости от пола и возраста и сравнивался с такими же показателями домашних животных. Средние данные, полученные в результате исследований, представлены в таблице 1.

Как видно из таблицы, морфологический состав мяса диких животных имеет много общего с характеристиками мяса домашних животных. Однако есть ряд видовых особенностей, которые связаны с условиями существования и борьбой за выживание на протяжении всей жизни.

Приведенные исследования морфологического состава мяса самцов кабана, оления и коулу показал (табл. 1), что 70,2±2,1 % в нем составляет мышечная ткань. В мясе самца свиньи ее на 4,8% меньше. Эта разница является статистически достоверной (Р<0,05). Однако в мясе кабана жировой ткани (показатель 11,5±3,3%) на 4,4% меньше, чем у домашней свиньи.

В мясе самца кабана на 1,5% меньше соединительной ткани. Эта разница является статистически достоверной (Р<0,02). Отличие в количестве костной ткани незначительно: у самца кабана она составляет 8,8±0,8, а у домашней свиньи – 8,1% (Рис. 1).

Наибольшее количество мышечной ткани среди самцов диких животных отмечено у самца оления – 79,6±3,1%, что на 8,5% больше, чем у быка крупного рогатого скота (Р<0,05). Незначительное отличие между самцом оления и быком отмечается в количестве жировой ткани: у крупного рогатого скота ее на 0,5% больше.
Существенна разница между оленем и быком крупного рогатого скота по такому показателю, как количество костной и соединительной тканей (Рис. 2). У оленя количество костной ткани составляет 15,5±2,4%, а у крупного рогатого скота 21,5±1,2%, что на 6% больше (P<0,05). С такой же достоверностью отличается мясо самца оления от мяса самца КРС по содержанию соединительной ткани (Рис. 2): у оления ее на 2,1% меньше (P<0,05).

У самца косули отмечается также большее содержание мышечной ткани, чем у барана. У самца косули на мышечную ткань приходится 76,1±1,6%, что на 4,2% больше, хотя эта разница не является статистически достоверной. В мясе самца косули содержание жировой ткани было на уровне 2,9±0,5%, что на 2,1% меньше, чем в мясе барана (P<0,05). В мясе самца косули было меньше и соединительной ткани – 5,7±0,4%, а у барана – 7,1±0,5%, то есть на 1,4% больше (P<0,05).

По содержанию костной ткани разница между самцом косули и бараном незначительна и статистически недостоверна – всего 0,7% (Табл. 1).

ВЫВОДЫ

В тушах диких копытных животных четко наблюдается большое количество мышечной ткани относительно такого же показателя у домашних животных. Причем эта разница статистически достоверна у кабана и оления (P<0,05), а в мясе косули больше мышечной ткани с тенденцией к достоверности. Это связано, очевидно, с активным образом жизни диких животных, их постоянной борьбой за выживание. Домашние животные содержатся в стойловых условиях, поэтому жировой ткани откладывается больше. В исследуемом мясе диких копытных животных отмечается взаимосвязь между количеством мышечной и соединительной тканями: чем меньше соединительной и жировой тканей, тем больше мышечной.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

2. ЖУБЧАК, О.М., ХОМЕНКО, В.І. та ін., 2005. Ветеринарно-санітарна експертиза основами технології і стандартизації продуктів тваринництва. Київ. 800 с.

Data prezentacji articolului: 01.10.2013
Data accepției articolului: 01.10.2014
Влияние жвачных процессов на молочную продуктивность коров разных пород

Татьяна Подпала, Ольга Марькина

УДК 636.2.034.082

Abstract. The article presents the study results concerning the breed traits of ruminant processes in cows in the first lactation period. It was established that under equal feeding and housing conditions, the Holstein cows have an advantage: the duration of rumination compared with Ukrainian Black Pied and Ukrainian Red Spotted dairy breeds. This is reflected in the level of the average daily milk yield. Among the studied breeds, Holstein cows recorded the highest level of daily milk yield (44.9±4.57 kg): by 15.1 kg more (D>0.95) compared with the Ukrainian Red Spotted breed and by 13.7 kg more (D<0.95) compared with Ukrainian Black Pied breed. The rhythm of rumination affects the productivity of animals, fact confirmed by the highly negative correlative relationship (r=−0.97 when P>0.999) recorded by the cows of Ukrainian Red Spotted dairy breed.

Key words: Breed; Cows; Total mixed ration; Rumination; Milk yield

Реферат. В статье приведены результаты исследования породных особенностей жвачных процессов у коров в первый период лактации. Выявлено, что при равных условиях кормления и содержания коровы голштинской породы имеют преимущества по продолжительности жвачки в сравнении с коровами украинской черно-пестрой молочной и украинской красно-пестрой молочной пород. Это отражается на уровне среднесуточного удоя. Голштинские коровы отличаются наивысшим уровнем суточного удоя (44.9±4.57 кг) среди исследуемых пород: на 15,1 кг больше (P>0.95) по сравнению с красно-пестрой породой и на 13,7 кг больше (P<0.95) по сравнению с черно-пестрой породой. Ритм жвачки влияет на продуктивность животных, что подтверждается установленная высокая отрицательная коррелятивная зависимость (r=−0.97 при P>0.999) у животных украинской красно-пестрой молочной породы.

Ключевые слова: Порода; Коровы; Общесмесянший рацион; Руминация; Удой

ВВЕДЕНИЕ

Реализация потенциала продуктивности жвачных животных в значительной степени зависит от условий кормления, которые отвечали бы их физиологическим потребностям. При этом повышение качества кормов направлено на увеличение количества и качества полученной продукции (молока, мяса) и уменьшение ее себестоимости.

Вместе с совершенствованием технологии заготовки кормов и кормления скота, нужно знать и понимать параметры оценки кормления и потребности животных в питательных веществах. Молочный скот - это жвачные животные, в рационе которых для нормальной работы преджелудков, стимулирования жвачки и переваривания клетчатки (необходимой для жизнедеятельности молока) ее должно быть достаточное количество. Состав рациона влияет на образование в рубце продуктов ферментации - летучих жирных кислот, и, соответственно, на степень их использования в процессах обмена веществ (Ярошенко, М. 2013).

Более обильно коровы секретируют молоко при наличии в рационе требуемого количества питательных веществ (белков, жиров, углеводов, минеральных веществ, витаминов). Известно, что жвачные процессы способствуют перевариванию питательных веществ корма и поэтому влияют на уровень молочной продуктивности коров. Вместе с тем, наступление жвачки может зависеть от окружающей среды. Так, высокая температура задерживает ее наступление, а при меньшем содержании растительных кормов (рубых, сочных) в рационе период жвачки короче.

Таким образом, продуктивность и влияние на нее руминации у крупного рогатого скота подлежит исследованию.

МАТЕРИАЛ И МЕТОДЫ

Научно-производственные исследования выполнены в условиях сельскохозяйственного общества с ограниченной ответственностью (СООО) "Промынь" Николаевской области (Украина). Данное хозяйство является племзаводом по разведению голштинской породы крупного рогатого скота. Технология производства молока в племзаводе крупного рогатого скота специализированных молочных пород предусматривает создание комфортных условий...
кормления полноценными моносеменами (общесмещанный рацион) и беспривязного содержания коров с отдыхом в боксах. Это обеспечивает максимальный уровень молочной продуктивности. В 2012 году средний удой на корову составил 9450 кг молока, при общем их поголовье 1200 голов. СООО «Промыв» является одним из лидеров молочной отрасли не только в Николаевской области, но и по Украине в целом.

Для проведения исследований нами были отобраны животные трех пород: голштинская (n=4), украинская черно-пестрая молочная (n=4) и украинская красно-пестрая молочная (n=4). Все животные, соответственно поточно-цеховой системе, находятся в равных условиях полноценного кормления и комфортного содержания, которое обеспечено системой природной вентиляции, наполненностью секции на 90%, регулируемым микроклиматом, чистой подстилка в боксах для отдыха.

Исследование жвачных процессов проводилось при помощи транспондеров пассивного типа, которые имеют функцию отслеживания руминации у животных. Цифровой материал обобщен при помощи программы Data Flow.

Обработка материалов исследований осуществлялась методами вариационной статистики (Плюхинский, Н. 1969; Меркуриева, Е. 1970) с использованием компьютерной техники и пакета прикладного программного обеспечения MS OFFICE 2010 Excel.

Результаты и обсуждения

Разработка и использование общесмещанных рационов (ОСР) позволила решить многие вопросы кормления крупного рогатого скота «компонентными рационами». В данной системе все корма смешиваются в однородный рацион (моносмесь) и подаются насыпью на кормовой стол. Каждая порция рациона имела одинаковую концентрацию всех питательных веществ. Поскольку рацион доступен в течение 24 часов в сутки, то проблемы, связанные с кормлением порциями, были разрешены. Это позволило стабилизировать содержание жира в молоке животных и по возможности повысить уровень удоя коров.

Согласно рекомендациям европейских экспертов, показатель структурной клетчатки в рационах крупного рогатого скота должен быть не менее 9-12% (в сухом веществе рациона), а сырой клетчатки - 16-18% (Брук, М. 2013).

В таблице 1 приведены составляющие рациона кормления коров на протяжении первой половины лактации.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Абсолютно сухой корм</th>
<th>Корм натуральной влажности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общая влага, г/кг</td>
<td>0</td>
<td>496</td>
</tr>
<tr>
<td>Сухое вещество, г/кг</td>
<td>1000</td>
<td>504</td>
</tr>
<tr>
<td>Сырой протеин, г/кг</td>
<td>181</td>
<td>91</td>
</tr>
<tr>
<td>Сырой жир, г/кг</td>
<td>35,2</td>
<td>17,73</td>
</tr>
<tr>
<td>Сырая клетчатка, г/кг</td>
<td>181,2</td>
<td>91,28</td>
</tr>
<tr>
<td>Сырая золь, г/кг</td>
<td>84</td>
<td>42</td>
</tr>
<tr>
<td>Безазотистые экстракт. вещества, г/кг</td>
<td>518,6</td>
<td>261,99</td>
</tr>
<tr>
<td>Нейтралнодетергентная клетчатка, г/кг</td>
<td>235,6</td>
<td>118,69</td>
</tr>
<tr>
<td>Кормовые единицы</td>
<td>0,96</td>
<td>0,48</td>
</tr>
<tr>
<td>Обменная энергия, МДж</td>
<td>11,3</td>
<td>5,7</td>
</tr>
<tr>
<td>Чистая энергия поддержки, МДж</td>
<td>7,4</td>
<td>3,8</td>
</tr>
<tr>
<td>Чистая энергия лактации, МДж</td>
<td>7,2</td>
<td>3,6</td>
</tr>
<tr>
<td>Чистая энергия прироста, МДж</td>
<td>4,8</td>
<td>2,4</td>
</tr>
<tr>
<td>Переваримость СВ корма, %</td>
<td>70,5</td>
<td>-</td>
</tr>
<tr>
<td>Потребление СВ корма, % массы тела</td>
<td>3,6</td>
<td>-</td>
</tr>
<tr>
<td>Относительная кормовая ценность</td>
<td>199</td>
<td>-</td>
</tr>
</tbody>
</table>

Используемый рацион кормления коров первой половины лактации содержит много протеина и много энергии. Эти два элемента являются ключевыми для восстановления обменных процессов у коров в начале лактации и достижения максимального уровня молочной продуктивности в этот период. Эффективность руминации, или количество пережевываний в
расчете на единицу потребленного корма, зависит от величины животного и химического состава корма. На руминацию кормов с высоким содержанием НДК (нейтральдегидетергентной клетчатки или клеточных стенок растений) нужно больше времени, чем на руминацию кормов более высокого качества.

Нами исследовано влияние жвачных процессов на молочную продуктивность коров трех специализированных молочных пород (Табл. 2).

Таблица 2. Характеристика жвачных процессов и молочная продуктивность коров разных пород

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Голштинская порода (n=4)</th>
<th>Украина черно-пестрая молочная порода (n=4)</th>
<th>Украина красно-пестрая молочная порода (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$X \pm Sx$</td>
<td>σ</td>
<td>$C_v, %$</td>
</tr>
<tr>
<td>Период с начала лактации, дн.</td>
<td>42,8±4,21</td>
<td>9,41</td>
<td>22,0</td>
</tr>
<tr>
<td>Полная руминация за сутки, мин.</td>
<td>366,2±2,53</td>
<td>57,08</td>
<td>15,6</td>
</tr>
<tr>
<td>Средняя руминация за сутки, мин.</td>
<td>43,0±2,27</td>
<td>5,08</td>
<td>11,8</td>
</tr>
<tr>
<td>Максимальный период руминации, мин.</td>
<td>73,3±6,94</td>
<td>15,53</td>
<td>21,2</td>
</tr>
<tr>
<td>Ритм жвачки</td>
<td>0,8±0,030</td>
<td>0,06</td>
<td>7,9</td>
</tr>
<tr>
<td>Период между срыгиваниями, сек.</td>
<td>57,8±3,50</td>
<td>7,83</td>
<td>13,5</td>
</tr>
<tr>
<td>Суточный удой исследуемых животных, кг</td>
<td>44,9±4,57</td>
<td>10,2</td>
<td>22,8</td>
</tr>
</tbody>
</table>

Установлено, что полный период руминации исследуемых пород в среднем составил 348,2-366,2 мин. при средней руминации за сутки – 42,7-43,1 мин. и максимальном периоде руминации – 67,8-76,8 мин. Это свидетельствует, что на протяжении суток коровы затрачивают на жвачные процессы 24,2-25,4%, то есть одну четвертую всего времени. Естественно, продолжительность руминации значительно влияет на переваримость питательных веществ общесмещенно стола и обусловливает уровень молочной продуктивности.

При средней руминации за сутки 42,7-43,1 мин. жвачных периодов в течение суток наблюдалось 8-9 раз независимо от породной принадлежности коров.

Вместе с тем, установлены различия между породами, в частности, по показателям продолжительности полной руминации за сутки и периоду между срыгиваниями. Коровы голштинской породы по величине суточного удоя превосходят животных украинской красно-пестрой породы на 15,1 кг (P>0,95) и коров украинской черно-пестрой породы на 13,7 кг (P<0,95).

Следовательно, на пережевывание 166,6 т/кг НДК, которое содержится в рационе, животные голштинской породы затрачивают большие времени по сравнению с сверстницами украинской черно-пестрой молочной и украинской красно-пестрой молочной пород. Более интенсивный процесс руминации положительно влияет на переваримость питательных веществ корма, а следовательно, и на уровень продуктивности.
О возможном влиянии такого физиологического процесса, как жвачка, на продуктивность молочного скота можно судить по наличию или отсутствию коррелятивной зависимости.

Нами исследованы показатели соотносительной изменичивости, которые позволили установить степень влияния отдельных элементов жвачки на суточный удой коров специализированных молочных пород (Табл. 3). Установлено, что среднесуточный удой положительно коррелирует с такими показателями, как полная и средняя руминация, а также максимальный период руминации. Для них характерна положительная средней и высокой степени коррелятивная зависимость. Относительно породных различий взаимосвязь «удой-максимальный период руминации» отличается высокими положительными значениями коэффициента корреляции у животных голштинской и украинской красно-пестрой молочной породы (r=0,84 при P>0,95 и r=0,85 при P>0,95 соответственно). Кроме того, украинская красно-пестрая молочная порода имеет положительной высокой степени коэффициент корреляции удоя и средней руминации (r=0,91 при P>0,95).

Таблица 3. Взаимосвязь жвачных процессов и продуктивности коров исследуемых пород, r± tr

<table>
<thead>
<tr>
<th>Соотносительные признаки</th>
<th>Порода</th>
<th>голштинская порода (n=4)</th>
<th>украинская черно-пестрая молочная порода (n=4)</th>
<th>украинская красно-пестрая молочная порода (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Удой – полная руминация</td>
<td>0,38±0,46</td>
<td>0,27±0,68</td>
<td>0,43±0,64</td>
<td></td>
</tr>
<tr>
<td>Удой – средняя руминация</td>
<td>0,68±0,37</td>
<td>0,76±0,46</td>
<td>0,91±0,29*</td>
<td></td>
</tr>
<tr>
<td>Удой – максимальный период руминации</td>
<td>0,84±0,27*</td>
<td>0,52±0,60</td>
<td>0,85±0,37*</td>
<td></td>
</tr>
<tr>
<td>Удой – ритм жвачки</td>
<td>-0,49±0,44</td>
<td>-0,41±0,64</td>
<td>-0,97±0,17***</td>
<td></td>
</tr>
<tr>
<td>Удой – период между срыгиваниями</td>
<td>-0,44±0,45</td>
<td>0,88±0,33*</td>
<td>-0,16±0,70</td>
<td></td>
</tr>
</tbody>
</table>

Примечания: * - P>0,95, *** - P>0,999

Вместе с тем, коррелятивная связь между признаками «удой-ритм жвачки» характеризуется отрицательной направленностью. Голштинская и украинская черно-пестрая молочная породы отличаются отрицательными средней степени коэффициентами корреляции. Сравнительно с ними у коров украинской красно-пестрой молочной породы проявляется отрицательная высокой степени коррелятивная зависимость между величиной удоя и ритмом жвачки (r=-0,97 при P>0,999). Это свидетельствует, что на жвачку расходуется энергия, и чем интенсивнее этот процесс, тем меньше энергии используется на молокообразование и, следовательно, ниже продуктивность (суточный удой коров украинской красно-пестрой молочной породы – 29,8 кг).

Взаимосвязь величины удоя и периода между срыгиваниями характеризуется отрицательной низкой (украинская красно-пестрая молочная) и средней степени (голштинская) коэффициентами корреляции, тогда как украинская черно-пестрая молочная порода отличается положительной высокой степени коррелятивной зависимостью (r=0,88 при P>0,95).

Согласно данным, приведенным в таблице 4, фенотипическое разнообразие показателей руминации не зависит от пород животных, в то время как продуктивность на 85,5% (P>0,95) определяется породной принадлежностью коров.

Таблица 4. Влияние породного показателя на продуктивность и жвачные процессы

<table>
<thead>
<tr>
<th>Показатель</th>
<th>F</th>
<th>η2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Суточный удой</td>
<td>6,90</td>
<td>0,855</td>
<td>>0,95</td>
</tr>
<tr>
<td>Полная руминация</td>
<td>0,30</td>
<td>-2,283</td>
<td><0,95</td>
</tr>
<tr>
<td>Средняя руминация</td>
<td>0,07</td>
<td>-1,419</td>
<td><0,95</td>
</tr>
<tr>
<td>Максимальный период руминации</td>
<td>0,96</td>
<td>-0,420</td>
<td><0,95</td>
</tr>
<tr>
<td>Ритм жвачки</td>
<td>0,60</td>
<td>-6,666</td>
<td><0,95</td>
</tr>
<tr>
<td>Период между срыгиваниями</td>
<td>0,27</td>
<td>-2,734</td>
<td><0,95</td>
</tr>
</tbody>
</table>
Следовательно, процессы руминации у коров специализированных молочных пород проявляются в соответствии с биологическими особенностями жвачных животных, а имеющиеся отличия больше зависят от их индивидуальных свойств.

ВЫВОДЫ

1. Коровы голштинской породы затрачивают больше времени на процессы жвачки по сравнению с другими исследуемыми породами. Как следствие, они отличаются наивысшим уровнем суточного удоя (44,9±4,57 кг).

2. Ритм жвачки влияет на продуктивность животных, что подтверждает установленная высокая отрицательная коррелятивная зависимость (r=−0,97 при P>0,999) у животных украинской красно-пестрой молочной породы.

3. Установлено, что фенотипическое разнообразие показателей руминации не зависит от породы животных, в то время как продуктивность на 85,5% (P>0,95) определяется породной принадлежностью коров.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

2. БУРЛАКА, В., БОРЦЕНКО, В., КРИВИЙ, М. Биология продуктивности сельскохозяйственных животных: Курс лекций. Житомир: Изд. ЖДУ. 191 с.
7. ЯСЕВИН, С., 2012. Оценка и усовершенствование интенсивной технологии производства молока: автореф. дис. канд. с.-х. наук: спец. 06.02.04 Технология производства продуктов животноводства. Николаев. 57 с.

Data prezentrii articolului: 19.09.2013
Data acceptarii articolului: 23.10.2014
ASSESSING THE POTENTIAL OF MOLDOVA’S AGRI-FOOD PRODUCTS IN THE CONTEXT OF EU NEIGHBOURHOOD

Liliana CIMPOIEŞ, Cornel COŞER
Universitatea Agrară de Stat din Moldova

Abstract. Due to the Deep and Comprehensive Free Trade Agreement signed recently between Moldova and European Union, it is of vital importance for local agri-food products to be competitive on the EU market in order to benefit from the potential gains of the increased demand. The aim of this research is to analyze the changes in the trade flows and to evaluate the consequences and potential benefits of DCFTA from the agri-food exports of Moldova. The authors used in the given research data from the National Bureau of Statistics for the period 2001-2012. The analysis of competitiveness will be carried out based on the intra and inter industrial trade indices (RTA, GL). The obtained results highlighted the advantages of some agri-food products, while the high values of GL index indicated an increase of imports for many agri-food products.

Key words: Agri-food products; Competitiveness; Trade flows; GL; RTA

INTRODUCTION

In the Republic of Moldova, as in other Central and Eastern European countries, many changes had occurred during the transition process towards a market economy in the agricultural and food trade environment. Trade liberalization is an important part of this transformation process.

In this paper we focus on the agri-food sector of Moldova. The core objective of this investigation is to assess the competitiveness of the local agri-food products on the EU markets and to examine the effects of trade liberalization on trade flows of Moldova in the context of the Deep and Comprehensive Free Trade Agreement with EU.

MATERIAL AND METHODS

This research analyzes some indicators of inter and intra industry trade. In order to analyze the agri-food trade indicators there were used data from the National Bureau of Statistics during the period 2001-2012. The data set includes 24 commodity groups, divided in agricultural products (01-15) and foodstuffs (16-24).

We also analyzed Moldova’s foreign trade activity using indices that measure the level of inter-industry trade - Revealed Trade Advantages index (RTA), and the intra-industry trade level - Grubel-Lloyd index (GL).

RESULTS AND DISCUSSIONS

Agriculture and food industry play a key role in the national economy. This sector represents an important share in the GDP (about 10% in 2012), and together with food industry about 30% in 2012. According to statistics, about 40% of the labor force is also employed in the agricultural sector.

The agri-food products have a large share in country’s trade activity. During 2001-2012 the share of agri-food products in the total trade was about 40%. During the same period, the share of agri-food imports was about 12%. The agri-food trade balance of Moldova is so far positive, 135541,4 mln US dollars in 2012.

The agri-food trade flows had increased during the analyzed period. Thus, the agri-food exports increased about 3 times from USD 356857.1 thousands in 2001 to USD 878881,1 thousands in 2012. The agri-food imports increased as well: from USD 143298.1 thousands in 2001 to USD 743339.7
Table 1. Evolution of Moldova’s agri-food trade flows, 2001-2012

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agri-food exports, mln US</td>
<td>356857.1</td>
<td>405533.3</td>
<td>463076.7</td>
<td>527184.7</td>
<td>582715.2</td>
<td>463292.8</td>
<td>594996</td>
<td>604745.7</td>
<td>732211</td>
<td>917103.1</td>
<td>878881.1</td>
<td></td>
</tr>
<tr>
<td>US dollars</td>
<td></td>
</tr>
<tr>
<td>Agri-food imports, mln US</td>
<td>143298.1</td>
<td>147024.9</td>
<td>204589.5</td>
<td>224995.8</td>
<td>279575</td>
<td>315611.9</td>
<td>465914.3</td>
<td>631390.5</td>
<td>513583</td>
<td>591522.2</td>
<td>687784.6</td>
<td>743339.7</td>
</tr>
<tr>
<td>US dollars</td>
<td></td>
</tr>
<tr>
<td>Agri-food trade balance, mln US dollars</td>
<td>213.59</td>
<td>258.084</td>
<td>294.872</td>
<td>302.889</td>
<td>303.482</td>
<td>315.611.9</td>
<td>465.914.3</td>
<td>-36.945</td>
<td>91162.7</td>
<td>80688.8</td>
<td>291.85</td>
<td>135.414</td>
</tr>
<tr>
<td>Share of agri-food exports in the total amount of exports, %</td>
<td>63.1</td>
<td>62.9</td>
<td>58.6</td>
<td>53.5</td>
<td>53.4</td>
<td>44.1</td>
<td>37.7</td>
<td>37.3</td>
<td>47.1</td>
<td>47.5</td>
<td>41.3</td>
<td>40.6</td>
</tr>
<tr>
<td>Share of agri-food imports in the total amount of imports, %</td>
<td>16</td>
<td>14.1</td>
<td>14.5</td>
<td>12.7</td>
<td>12.1</td>
<td>11.7</td>
<td>12.6</td>
<td>12.8</td>
<td>15.6</td>
<td>15.3</td>
<td>13.2</td>
<td>14.2</td>
</tr>
</tbody>
</table>

Source: based on data from the National Bureau of Statistics

thousands in 2012. As for the imports structure, the largest share belongs to foodstuffs, alcoholic drinks and vegetable products.

In the Republic of Moldova, out of the total agri-food exports, about 80% belongs to agricultural products (commodity group 01-15) and only 20% to food processing industry products.

The main exported products are vegetal products, vegetables, animal fats and oils, and foodstuffs. The exports of vegetable products mostly increased in the analyzed period, except from the sharp decrease in 2012 caused by the severe drought that affected the production and as a result the exports. Out of this group of products, a higher share belongs to edible fruits and oil seeds, the export of both being in a steady increase in the last years.

As for the agri-food export by groups of products to the EU market, the largest share belongs as well to vegetable products (USD 141079 thousands in 2012) and to processed foodstuffs; beverages, spirits and vinegar; tobacco and manufactured tobacco substitutes (USD 110423 thousands in 2012). Generally, all agri-food exports to EU countries recorded an increase in this period, except the group of vegetable products which registered a slight decrease in 2012, about 40%.

Figure 2. Agri-food exports of Moldova, by commodity groups, thousands USD
In the analyzed period, together with exports, the agri-food imports increased as well. In the structure of agri-food imports a large share belongs as well to processed foodstuffs, beverages and tobacco (about 50%), vegetable products, live animals and animal products. The agri-food imports from EU countries increased as well and the largest share belongs to processed foodstuffs, beverages and tobacco.

The largest export markets for Moldova’s agri-food products are still the CIS countries, accounting 46% of total country exports and 46% of agri-food exports in 2012. Russian Federation is the main trading partner of Moldova with an export share of 30% and 15% for imports. The agri-food exports to Russia amounted to USD 235034 thousands in 2012, with 13% more than its level in 2001. Out of this, the largest share in 2012 belonged to vegetable products (46%) and processed foodstuffs, beverages and tobacco (41%).

The agri-food exports to CIS countries registered a sharp decrease in 2006 because of the interdiction imposed by the Russian Federation on Moldovan wines. As a result, the exports to CIS countries was about 50% lower in 2006-2007.

Another main trading partner of the Republic of Moldova is the EU countries market, which is the second largest market (38%) for agri-food products. In 2012, the largest share in Moldova’s agri-food exports to the EU countries was recorded by Romania (USD 79364 thousands), Italy (USD 57187 thousands), Poland (USD 35396 thousands) followed by France and United Kingdom.

The exports to EU countries increased mostly after 2005 and basically doubled. An important factor of the increased share of Moldova’s trade on the EU markets was the accession of Romania and Bulgaria to EU family. Nevertheless, EU countries have a lower share, particularly for some specific agri-food exports as mostly for food, live animals, beverages and tobacco. Particularly, it is generated because of Moldova’s capacity to adapt to the demanding standards imposed by the EU market. Before joining the EU family, Romania was one of the main trading partners for Moldova’s meat exports. As for other products, such as wine and alcoholic beverages, the EU markets are highly competitive which imposes difficulties in terms of price and quality for entering this market.

The agri-food imports also had increased and amounted to USD 743339 thousands in 2012. CIS countries have the largest share in Moldova’s agri-food imports (42%) followed by the EU countries (34%). In 2012, among the CIS countries, the largest trading partner in agri-food imports was Ukraine (USD 216295 thousands), followed by Russia (USD 70805 thousands) and Belarus (USD 25285 thousands).

In 2012, among the EU countries, in terms of Moldova’s agri-food imports, the largest share had Germany (USD 40002 thousands), Romania (USD 26797 thousands), Poland (USD 23890 thousands) followed by Italy, Bulgaria and France.
For the Republic of Moldova, according to NEI index, some commodities register higher imports (with values between -1 and zero) while others register higher exports. The exports prevail for the following commodities: “Edible fruits and walnuts; peel of citrus fruits or melons”; “Cereals”; “Oil seeds and oleaginous fruits; miscellaneous grains, seeds and fruits; industrial or medicinal plants; straw and fodder”; “Animal or vegetable fats and oils and their cleavage products; prepared edible fats; animal or vegetable waxes”; “Sugars and sugar confectionery”; “Preparations of vegetables, fruits, walnuts or other parts of plants”; “Beverages, spirits and vinegar”.

In order to appreciate country’s comparative advantage (or the one of a particular sector) Bela Balassa (Balassa, 1965) elaborated the method that reveals the “Revealed Comparative Advantages” (RCA). This method is based on the assumption that the implicit comparative advantages find their reflection directly in the trade flows. According to Balassa, comparative advantages are manifested in relatively high shares of a particular product/sector in the structure of exports. At the same time the relative limitations are reflected through low shares of a product/sector.

The RCA index or Balassa index is an indicator that characterizes the ratio of a commodity \(i \) in the total amount of country’s exports and the share of this commodity in the total amount of world’s exports. This index is based on observed trade patterns. This index is defined as:

\[
B = \frac{X_{ij}}{X_{it}} \bigg/ \frac{X_{nj}}{X_{nt}}
\]

where:
- \(X \) – export;
- \(i \) – a country;
- \(j \) – a commodity;
- \(t \) – a set of commodities;
- \(n \) – a set of countries.

If \(B > 1 \), then a comparative advantage is revealed. The standard deviation of this index across products can be used as measure of the comparative importance of inter-industry specialization or intra-industry trade.

An alternative specialization of the revealed comparative advantage was developed by Vollrath (Vollrath, 1991) and was called Relative Trade Advantage (RTA). The RTA index is calculated as the difference between the relative export advantage (RXA) or Balassa index and the relative import advantage (RMA):

\[
RTA = RXA - RMA
\]

where,

\[
RXA = B = \frac{X_{ij}}{X_{it}} \bigg/ \frac{X_{nj}}{X_{nt}};
\]

\[
RMA = \frac{M_{ij}}{M_{it}} \bigg/ \frac{M_{nj}}{M_{nt}};
\]

\(M \) – import.

The positive value of RTA indicates comparative trade advantages, while negative value indicates comparative trade disadvantages. When RTA is greater than zero, then a comparative advantage is revealed, which means that a sector of the country is relatively more competitive in terms of trade.

In order to evaluate the competitiveness of Moldova’s agri-food products on the EU markets it was calculated the Revealed Trade Advantages index (RTA) as a measure for inter-industry trade.

Moldova has relative trade advantages on the EU market for 7 out of 24 agricultural commodities and foodstuffs. The highest RTA index values in 2012 were registered for preparations of vegetables, fruit, walnuts or other parts of plants (10.68), Edible fruits and walnuts; peel of citrus fruits or melons (7.71), live trees and other plants; bulbs, roots and the like; cut flowers and ornamental foliage (5.54).

Comparative trade disadvantages, in 2012, were recorded in the following commodity groups: live animals (-1.4), Fish and crustaceans, mollusks and other aquatic invertebrates (-2.13), Edible vegetables and certain roots and tubers (-1.53), cereals (-0.54), Preparations of cereals, flour, starch or milk; pastrycooks’ products (-1.14), Tobacco and manufactured tobacco substitutes (-2.09). Beside the commodity groups with revealed trade advantages and comparative trade disadvantage, we can observe that a number of products during the analyzed period have switching values for RTA index. The commodity group HS 05 (Products of animal origin, not elsewhere specified or included) and HS 12 (Oil seeds and oleaginous fruits; miscellaneous grains, seeds and fruits; industrial or medicinal plants; straw and fodder) increased their relative trade advantages on the EU market. Therefore, the RTA index for these commodity products had increased during 2001-2012 from -0.68 to 4.11 for HS 05, and from -1.15 to 2.05 for HS 12. An opposite tendency was observed for the commodity group HS 24 (Tobacco and manufactured tobacco substitutes) whose values decreased from 0.19 to -2.09.
Table 2. Moldova’s Relative Trade Advantages with EU, by agri-food products

<table>
<thead>
<tr>
<th>RTA > 1</th>
<th>RTA < 1</th>
<th>RTA switching values</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 ..Live trees and other plants; bulbs, roots and the like; cut flowers and ornamental foliage</td>
<td>02 ..Meat and edible meat offal roots and tubers</td>
<td>04 ..Dairy produce; birds’ eggs; animal origin, not elsewhere specified or included</td>
</tr>
<tr>
<td>08 ..Edible fruits and walnuts; peel of citrus fruits or melons</td>
<td>07 ..Edible vegetables and certain roots and tubers</td>
<td>11 ..Products of the milling industry; malt; starches; inulin; wheat gluten</td>
</tr>
<tr>
<td>15 ..Animal or vegetable fats and oils and their cleavage products; prepared edible fats; animal or vegetable waxes</td>
<td>10 ..Cereals</td>
<td>12 ..Oil seeds and oleaginous fruits; miscellaneous grains, seeds and fruits; industrial or medicinal plants; straw and fodder</td>
</tr>
<tr>
<td>20 ..Preparations of vegetables, fruits, walnuts or other parts of plants</td>
<td>17 ..Sugars and sugar confectionery</td>
<td>19 ..Preparations of cereals, flour; starch or milk; pastrycooks’ products</td>
</tr>
<tr>
<td>22 ..Beverages, spirits and vinegar</td>
<td>21 ..Miscellaneous edible preparations</td>
<td>24 ..Tobacco and manufactured tobacco substitutes</td>
</tr>
</tbody>
</table>

Source: author’s calculations based on data from the National Bureau of Statistics

In order to assess the intra industry trade there were developed some indicators, out of which the most used is the Grubel-Lloyd index (GL) (Grubel, Lloyd 1975). According to it, intra industry trade is determined as the trade between countries, where the costs of exports of a particular sector corresponds to the costs of imports of the same sector. The GL index determines the share of intra industry trade in the total amount of exports of a particular sector. For computing this index it is needed to sum particular trade flows. The index is changing in values from 0 to 100.

\[
GL_i = \frac{[X_i + M_i] - |X_i - M_i|}{X_i + M_i} \times 100\% \tag{3}
\]

where,
- \(GL_i\) – index of intra industry trade;
- \(X_i\) - value of export in industry i;
- \(M_i\) - value of import in industry i;
- \(X_i+M_i\) - total value of trade;
- \(|X_i - M_i|\) - trade balance of industry i.

The closer the GL value is to 100, the more important is the intra industrial trade, and the closer is GL value to 0 the more important is the inter-industry trade. In order to establish an average level of intra-industry trade, Grubel and Lloyd proposed the weighted index to arrive at an overall measure of intra industry trade.

The traditional measure of intra industry trade is used and the Grubel Lloyd index is calculated as follows:

\[
GL_i = \frac{|X_i - M_i|}{X_i + M_i} \tag{4}
\]

Where, \(Xi\) is the export in a certain line of goods and \(Mi\) is the import in the same commodity group.

The value of \(GLi\) index can vary between 0 and 1. The higher the value of this index, the higher the level of intra industrial trade.

The analysis of Moldova’s intra-industry trade with agri-food products is based on the Grubel-Lloyd index (GL). The intra-industry trade index for Moldova was calculated by commodity groups, as well as by trading partners (CIS countries, EU countries), and by agricultural products and foodstuffs.

The level of intra-industry trade varies by commodities groups and trading partners. High trade intensity of both agricultural products and foodstuffs during 2001-2012 is noticed. The GL index increased for the total agri-food trade, on average from 62.9% during 2001-2006 to 69.3% during 2007-2012. Also, an increase in the intensity of intra-industry trade on average is noticed for the agricultural commodities (01-15) from 79.7% during 2001-2006 to 83.6% in 2007-2012; and for foodstuffs from 52.6% to 60.1%. The increasing values are related to the increase of imports and decrease of exports for agricultural and foodstuffs commodities.
Table 3. The level of intra–industry trade with agri-food products of the Republic of Moldova with all trading partners

<table>
<thead>
<tr>
<th>Commodity groups</th>
<th>2001-2006</th>
<th>2007-2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Live animals</td>
<td>68.4</td>
<td>66.0</td>
</tr>
<tr>
<td>02 Meat and edible meat offal</td>
<td>50.7</td>
<td>46.4</td>
</tr>
<tr>
<td>03 Fish and crustaceans, mollusks and other aquatic invertebrates</td>
<td>4.5</td>
<td>0.79</td>
</tr>
<tr>
<td>04 Dairy produce; birds’ eggs; natural honey; edible products of animal origin,</td>
<td>72.5</td>
<td>41.5</td>
</tr>
<tr>
<td>not elsewhere specified or included</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 Products of animal origin, not elsewhere specified or included</td>
<td>7.72</td>
<td>19.3</td>
</tr>
<tr>
<td>06 Live trees and other plants; bulbs, roots and the like; cut flowers and</td>
<td>34.8</td>
<td>32.4</td>
</tr>
<tr>
<td>ornamental foliage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 Edible vegetables and certain roots and tubers</td>
<td>68.7</td>
<td>44.5</td>
</tr>
<tr>
<td>08 Edible fruits and walnuts; peel of citrus fruits or melons</td>
<td>38.5</td>
<td>50.4</td>
</tr>
<tr>
<td>09 Coffee, tea, mate and spices</td>
<td>13.5</td>
<td>9.01</td>
</tr>
<tr>
<td>10 Cereals</td>
<td>34.9</td>
<td>46.9</td>
</tr>
<tr>
<td>11 Products of the milling industry; malt; starches; inulin; wheat gluten</td>
<td>7.8</td>
<td>6.43</td>
</tr>
<tr>
<td>12 Oil seeds and oleaginous fruits; miscellaneous grains, seeds and fruit;</td>
<td>65.51</td>
<td>43.9</td>
</tr>
<tr>
<td>industrial or medicinal plants; straw and fodder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Lac; gums, resins and vegetable saps and extracts</td>
<td>0.36</td>
<td>4.92</td>
</tr>
<tr>
<td>14 Vegetable plaiting materials; vegetable products not elsewhere specified or</td>
<td>62.14</td>
<td>55.89</td>
</tr>
<tr>
<td>included</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Animal or vegetable fats and oils and their cleavage products; prepared</td>
<td>44.18</td>
<td>49.58</td>
</tr>
<tr>
<td>edible fats; animal or vegetable waxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Preparations of meat, of fish or of crustaceans, mollusks or other aquatic</td>
<td>54.98</td>
<td>12.11</td>
</tr>
<tr>
<td>invertebrates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Sugars and sugar confectionery</td>
<td>81.58</td>
<td>72.37</td>
</tr>
<tr>
<td>18 Cocoa and cocoa preparations</td>
<td>25.8</td>
<td>21.08</td>
</tr>
<tr>
<td>19 Preparations of cereals, flour, starch or milk; pastrycooks’ products</td>
<td>48.9</td>
<td>37.8</td>
</tr>
<tr>
<td>20 Preparations of vegetables, fruits, nuts or other parts of plants</td>
<td>34.3</td>
<td>57.3</td>
</tr>
<tr>
<td>21 Miscellaneous edible preparations</td>
<td>19.2</td>
<td>14.9</td>
</tr>
<tr>
<td>22 Beverages, spirits and vinegar</td>
<td>20.2</td>
<td>47.7</td>
</tr>
<tr>
<td>23 Residues and waste from the food industry; prepared animal fodder</td>
<td>70.2</td>
<td>90.4</td>
</tr>
<tr>
<td>24 Tobacco and manufactured tobacco substitutes</td>
<td>57.4</td>
<td>43.02</td>
</tr>
</tbody>
</table>

Source: authors’ calculations based on data from the National Bureau of Statistics

Looking at the level of intra-industry trade by commodity groups we can see an increasing value of some product groups (05, 08, 10, 13, 15, 20, 22, 23) caused by the increase in imports of these products and decrease of exports. This increase in imports has advantage for consumers because they receive a higher variety of commodities on the market, but for producers, an increase in the level of intra-industry trade doesn’t mean receiving higher incomes. On the contrary, for certain commodity groups (01, 02, 03, 04, 06, 07, 09, 11, 12, 14, 16, 17, 18, 19, 21, 24) the decreasing values in the level of intra-industry trade supposes having advantages or receiving higher incomes from specialization, due to concentration of production, decrease of costs and higher production efficiency.

Table 4. GL index results for Moldova’s agri-food products, by country groups

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS countries</td>
<td>0.63</td>
<td>0.66</td>
<td>0.76</td>
<td>0.76</td>
<td>0.79</td>
<td>0.92</td>
<td>0.98</td>
<td>0.99</td>
<td>0.96</td>
<td>0.93</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>EU countries</td>
<td>0.98</td>
<td>0.95</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.96</td>
<td>0.98</td>
<td>0.99</td>
<td>0.97</td>
<td>0.97</td>
<td>0.94</td>
<td>0.97</td>
</tr>
<tr>
<td>Total</td>
<td>0.86</td>
<td>0.85</td>
<td>0.88</td>
<td>0.88</td>
<td>0.91</td>
<td>0.96</td>
<td>0.99</td>
<td>0.99</td>
<td>0.98</td>
<td>0.97</td>
<td>0.96</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Source: authors’ calculations based on data from the National Bureau of Statistics

As for the agri-food trade during the period 2001-2012 by main trading partners, a high level of intra-industry trade is common for both EU and CIS countries. If for CIS countries the index was increasing during this period, for EU countries the level of intra-industry trade basically did not change.
A high level of intra-industry trade might be based on such factors as: geographical closeness, shared border, same level of development, similar preferences, language, institutional conditions and transport routes (Levkovych I. et al 2007). Such a situation is specific for the increasing values of GL index in CIS countries, particularly for the nearest neighbours as Ukraine.

CONCLUSIONS

1. In this paper, we have analyzed the international trade flows of agri-food products in order to assess their potential on the EU market. We analyzed and discussed the changes during the period 2001-2012 in both import and export structure of Moldova’s agri-food products and calculated such trade indicators of inter and intra industrial trade as RTA index and Grubel-Lloyd index. The agri-food trade has a large share in country’s overall trade. Moldova particularly specializes in such products as vegetable products, vegetable or animal fats and oils, foodstuffs.

2. According to the obtained results for RTA index we can notice some advantage for certain agri-food products with EU countries, such as: edible fruits and walnuts; animal or vegetable fats and oils; preparations of vegetables, fruits, nuts; beverages. Nowadays, the comparative advantages of Moldova are not fully used. This is explained by the decreasing or switching values of RTA index for some commodities groups.

3. Also, we calculated the GL index to indicate the level of intra-industry specialization and to observe the changes that happened during the analyzed period. Looking at the level of the intra-industry trade by commodity groups such as: dairy products; edible vegetables; oil seeds and oleaginous fruits; sugar; and tobacco, the decreasing values in the level of intra-industry trade supposes having advantages or receiving higher incomes from specialization, due to concentration of production, decrease of costs and higher production efficiency.

4. The analyzed period was characterized by the increase in trade flows with EU countries, tendency that will be maintained and increased in the near future probably, particularly after the DCFTA is signed. For the agricultural producers, the DCFTA will open new opportunities on larger markets with high purchasing power and price level stability. In this context, it is needed to enhance the competitiveness of Moldova’s agri-food products by increasing the quality and efficiency of the agricultural production.

REFERENCES

Data prezentării articolului: 22.08.2014
Data acceptării articolului: 10.11.2014
Abstract. Vegetable growing is an important branch of Moldova’s agriculture designed to ensure food security of the population with a reasonable consumption and appropriate assortment, to meet the integral needs of the food industry and processing industry with raw materials and to contribute to the development of country’s export of fresh and processed vegetables. The purpose of this research is to analyze the dynamics of field vegetable production level and economic efficiency of this process in the period 2006-2012 and to establish the trend of change, to calculate the forecast for the period up to 2017, to analyze the key indicators as well as to determine new actions for the stable and efficient cultivation of field vegetables. Dynamic analysis carried out for the period 2006-2012 shows that the economic efficiency of the field vegetables production is low. The productivity of field vegetables is low, the unit costs of the sold vegetables are increasing, while the average sale price of 1 q does not fully cover or covers insufficiently the unit costs. The calculations show that without carrying out permanent measures designed to redress this branch, vegetable production will become unprofitable by 2017.

Key words: Vegetable growing; Economic efficiency; Productivity; Trends

Rezumat. Legumicultura este o ramură importantă a agriculturii în Republica Moldova ce tinde să asigure securitatea alimentară a populației cu un consum rațional și asortiment adecvat, să satisfacă în totalitate necesitățile industriei alimentare și de prelucrare cu materie primă și să contribuie la dezvoltarea exportului de legume în stare proaspătă și prelucrată. Scopul cercetării este de a analiza în dinamică nivelul producției legumelor de câmp și eficiența economică a acestui proces în perioada 2006-2012 și de a stabili tendința de modificare, calculul pronosticului pentru perioada de până în anul 2017, de a analiza principali indicatori, precum și a determina noile acțiuni în culturarea stabilă și eficientă a legumelor de câmp. Analiza efectuată în dinamica anilor 2006-2012 demonstrează că eficiența economică a producției legumelor de câmp este la un nivel scăzut. Productivitatea legumelor de câmp este redusă, costurile unitare ale legumelor vândute sunt în creștere, iar prețul mediu de vânzare al 1 q nu acoperă pe deplin sau acoperă insufficient costurile unitare. Dacă nu se vor întreprinde măsuri permanente de redresare a ramurii atunci calculele demonstrează că din anul 2017 producerea de legume va deveni nerenabilă.

Cuvinte-cheie: Legumicultură; Eficiență economică; Productivitate; Tendințe

INTRODUCERE

Conform cercetărilor efectuate anterior categoria eficienței economice a producției agricole constă în formarea unui complex de cerințe și condiții necesare asigurării reproducției lărgiene. De asemenea, eficiența economică a unei ramuri trebuie să satisfacă cererea de produse alimentare și de materie primă, să permită dezvoltarea în armonie a acesteia, în condițiile funcționării unor relații reciproce și în scopul asigurării unei agriculturi durabile.

Sporirea randamentului la nivel maxim și a efectelor utile la unitatea de efort trebuie să fie scopul întregii activități economice, dar cu condiția păstrării echilibrului ecologic. Organizarea reproducției lărgiene a oricărei ramuri, inclusiv și a legumiculturii, depinde de nivelul eficienței economice, deoarece anume profitul creează premisele și condițiile necesare proceselor de reproducție lărgetică (Timofti, E. 2009).

Procesele economice și manageriale negative din perioada de trecere la economia de piață, evenimentele sociale și calamitățile naturale din anii 2006-2012 au afectat suprafețele însământate cu legume de câmp din Republica Moldova.

În comparație cu anul 2001, când în gospodăriile de toate categoriile suprafața semănăturilor cu legume de câmp constitua 62,2 mii ha, iar ponderea în structura suprafețelor însământate era de 4% și producția globală constituia 448,1 mii tone (Anuar Statistic 2004), la 1 ianuarie 2012 suprafața însămânțată cu culturi legumicole s-a diminuat cu 45% și a ajuns la 34,4 mii ha, iar producția globală s-a diminuat până la 361,5 mii tone sau cu 20,3% (Anuar statistic 2012).

Ponderea suprafeței cultivate cu legume în întreprinderile agricole în anul 2001 constituia 17%, cu o diminuare în anul 2012 până la 2,0% din suprafața totală cultivată în republică.

Concomitent, s-a diminuat și volumul producției legumelor destinate pentru fabricarea conservelor, în diminuare fiind și indicatorii ce caracterizează eficiența economică a producției legumelor.
Toate acestea, precum și alte probleme, au influențat producția legumelor și au impus decizia de a cerceta starea și dezvoltarea culturii legumelor de câmp, eficiența economică a producției acestora și a găsi tendințele de modificare în perioada 2006-2012, precum și de eficientizare a ramurii sub influența mai mulțor factori.

MATERIAL ȘI METODĂ

Investigațiile la temă s-au axat pe datele anuarelor statistice, formularelor specializate privind activitatea întreprinderilor agricole.

În cadrul cercetărilor au fost utilizate mai multe metode și procedee: observarea, seriile cronologice, comparația, indicii statistici, tabelele și graficele, nivelarea analitică a seriilor cronologice, precum și devierea absolută.

REZULTATE ȘI DISCUȚII

Condițiile pedoclimatice relativ favorabile, solurile fertile, tradițiile și experiența bogată în agricultură oferă posibilități de a cultiva circa 70 de specii de plante legumicole în Republica Moldova, orientate spre obținerea unor recolte înalte și profitabile.

Date argumentate științifice indică că producția anuală de legume în republică trebuie să fie de un milion de tone, dintre care 600 de mii de tone pentru consum local, 300 de mii de tone pentru prelucrare spre obținerea unor recolte înalte și profitabile.

Date argumentate științifice indică că producția anuală de legume în Republica Moldova, orientate spre obținerea unor recolte înalte și profitabile, pentru a asigura consumul de legume al populației, s-a transformat într-un importator al lor din Grecia, Turcia, Israel și alte țări.

Tabelul 1. Dinamica suprafețelor cultivate și a recoltei globale de legume de câmp în întreprinderile agricole din Republica Moldova

<table>
<thead>
<tr>
<th>Anul</th>
<th>Suprafața efectiv cultivată, ha</th>
<th>Ritmul de creștere/descreștere în lanț Re, %</th>
<th>Recolta globală, q</th>
<th>Ritmul de creștere/descreștere în lanț Re, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>9429</td>
<td>-</td>
<td>727398</td>
<td>-</td>
</tr>
<tr>
<td>2007</td>
<td>10562</td>
<td>11,2</td>
<td>409127</td>
<td>56</td>
</tr>
<tr>
<td>2008</td>
<td>10039</td>
<td>95</td>
<td>752870</td>
<td>184</td>
</tr>
<tr>
<td>2009</td>
<td>7150</td>
<td>71</td>
<td>401040</td>
<td>53</td>
</tr>
<tr>
<td>2010</td>
<td>7717</td>
<td>108</td>
<td>491372</td>
<td>122</td>
</tr>
<tr>
<td>2011</td>
<td>6354</td>
<td>82</td>
<td>540725</td>
<td>124</td>
</tr>
<tr>
<td>2012</td>
<td>5147</td>
<td>81</td>
<td>372642</td>
<td>69</td>
</tr>
<tr>
<td>x</td>
<td>X</td>
<td>90,3</td>
<td>X</td>
<td>89,3</td>
</tr>
</tbody>
</table>

Sursa: Calculat de autori conform formularelor specializate ale întreprinderilor agricole din Republica Moldova

Ritmul mediu de creștere/descreștere în lanț \(\bar{R}_c \) a fost determinat în baza formulei mediei geometrice:

\[
\bar{R}_c = \sqrt[n]{R_{C_1} \times R_{C_2} \times \ldots \times R_{C_n}}, \quad (1)
\]

unde:

\(R_{C_1}, \ldots, R_{C_n} \) sunt ritmul de creștere/descreștere anuale calculat cu bază mobilă (în lanț), iar \(n \) reprezintă numărul ritmurilor de creștere;

\[\bar{R}_c \] al suprafeței cultivate = \(\sqrt[7]{1,12 \times 0,95 \times 0,71 \times 1,08 \times 0,82 \times 0,81} = 0,903 \times 90,3 \%

\[\bar{R}_c \] al recoltei globale = \(\sqrt[6]{0,56 \times 1,84 \times 0,53 \times 1,09 \times 1,24 \times 0,69} = 0,893 \times 89,3 \%

Conform datelor reflectate în tabelul 1, observăm că în perioada anilor 2006–2012 suprafața cultivată anual s-a diminuat în medie cu 9,7%. Doar în anii 2007 și 2010 s-a înregistrat o majorare cu 12% și, respectiv, cu 48%.
Reducerea suprafețelor de cultivare a legumelor în condițiile lipsei mijloacelor bănești are consecințe negative asupra situației financiare a întreprinderilor agricole. Variația suprafețelor cultivate și a productivității la 1 ha înfluențează direct recolta globală a legumelor de câmp. Astfel, în perioada 2006–2012 s-a înregistrat o diminuare medie anuală de 10,3% a recoltei globale.

În continuare, utilizând metoda indicilor statistici, conform relației de mai jos (2), vom efectua analiza ponderii de influență a suprafeței cultivate și a productivității la 1 ha asupra recoltei globale în anii 2011-2012:

\[
ips = ip \times is
\]

unde: ips, ip și is sunt indicii individuali ai recoltei globale, ai productivității la 1 ha și ai suprafeței de cultivare a legumelor.

Din legătura reciprocă a indicilor individuali, notați prin semn convențional, obținem formula:

\[
\frac{P_i S_i}{P_o S_o} = P_i \times \frac{S_i}{S_o}
\]

unde \(P_i\) și \(P_o\) semnifică productivitatea la 1 ha a legumelor de câmp în anii de comparație 2011 și 2012, \(q\), iar \(S_o\) și \(S_i\) – suprafață cultivată cu legume de câmp în anii 2011 și 2012, \(ha\). Aplicând aceste formule pentru datele din tabelul 1 obținem:

modificarea în mărimi relativă:

\[
\frac{372642}{540725} = \frac{72,4}{85,1} \times 5147
\]

\[0,689 = 0,851 \times 0,810\]

modificarea în mărimi absolută:

a recoltei globale, \(q\):

\[P1S1 - P0S0 = 372642 - 540725 = -168093\ q\]

inclusiv pe seama modificării:

a productivității la 1 ha, \(q\):

\[(P1 - P0) \times S1 = (72,4 - 85,1) \times 5147 = -65367\ q\]

a suprafeței cultivate, \(q\):

\[(S1 - S0) \times P1 = (5147 - 6354) \times 85,1 = -102716\ q\]

Verificarea: \[168083 - 65367 - 102716 = 0\]

Analiza permite să concluzionăm că în anul 2012, în comparație cu anul 2011, recolta globală a legumelor de câmp a diminuat cu 31,1% sau cu 168,0 mii \(q\). La aceasta a contribuit reducerea productivității la 1 ha cu 14,9%, ceea ce a diminuat recolta globală cu 65,3 mii \(q\), precum și reducerea suprafeței cultivate cu 19%, ceea ce a dus la diminuarea recoltei globale cu 102,7 mii \(q\). Posibilitățile de obținere a recoltei globale în anul 2012 la nivelul anului 2011 în baza acestor doi factori sunt determinate în continuare.

Dacă în anul 2012 întreprinderile agricole ar fi avut posibilitatea de a cultiva aceeași suprafață ca în anul 2011, atunci ar fi obținut cu 87,4 mii \(q\) de legume de câmp mai mult, date confirmate prin următoarele calcule:

\[(5147 ha – 6354 ha) \times 72,4 q/ha = 87,4 mii q\]

Dacă întreprinderile agricole pe suprafețe efectiv cultivate în anul 2012 ar fi atins ca în anul 2011 productivitatea la 1 ha de 85,1 \(q\), atunci ar fi obținut suplimentar 65,4 mii \(q\) de legume:

\[(72,4 – 85,1) q/ha \times 5147 ha = 65,4 mii q\]

Dezvoltarea durabilă a legumiculturii necesită aplicarea unor măsuri permanente, precum sporirea gradului de valorificare a potențialului de resurse; implementarea progresului tehnic – științific; producerea răsădului de calitate și în cantități necesare acordate la termene optime pentru plantare, ceea ce permite ocuparea unor suprafețe de 50–100 ori mai mici decât cele pe care culturile ar fi semnătate direct și economisirea a 40–50% din cantitatea de semințe la o unitate de suprafață (Botnari, V. 2011).

Ținând seama de faptul că precipitațiile căzute în sezonul de vegetație sunt insuficiente pentru a asigura necesarul de apă, cultivarea legumelor poate fi realizată cu rezultate înalte doar în condiții de irigare. Sistemele de irigare trebuie să asigure aplicarea corectă a normalor de udare cu consumuri de apă cât mai mici, precum și cu costuri reduse. Alegerea corectă a tehnologiilor moderne adaptive oferă posibilitatea de a optimiza atât consumul de apă, cât și pe cel de îngrășăminte care influențează direct creșterea producției și diminuarea costurilor. În afară de aceasta este necesar de menționat că structura suprafețelor de cultivare a legumelor înregistrată în ultimii ani este departe de cea optimală, care să corespundă cerințelor pieței, securității alimentare, posibilității de export (Botnari, V. 2011).
Întreprinderile agricole specializate în producerea legumelor din zonele răurilor Prut, Nistru și Râut ar putea să producă legume în cantități mari și de calitate în condițiile în care ar dispune de o bază materială modernizată, ar fi dotate cu mijloace tehnice, instalații pentru irigare prin picurare și dispersie, îngrașăminte minerale și organice, tehnologii moderne, ar cultiva soiuri și hibrizi competitivi, luând în considerație cerințele consumatorilor, tendințele în marketing etc.

O economie eficientă se caracterizează printr-un nivel înalt de folosire a posibilităților sale economice și de producere, care să creeze condiții favorabile pentru realizarea procesului de reproducție lârgită. Eficiența producției se caracterizează prin efectul rezultatelor pozitive obținute, care trebuie să depășească eforturile.

La caracterizarea oricărui sector de producție, inclusiv a legumiculturii, se folosește un sistem de indicatori care exprimă factori speciali ce influențează rezultatele. Acești indicatori reflectă nivelul de utilizare a consumurilor materiale, a terenului insăși, a calității produselor etc. (Tab. 2).

Tabelul 2. Dinamica eficienței economice a producerii legumelor de câmp în întreprinderile agricole din Republica Moldova

<table>
<thead>
<tr>
<th>Indicatorul</th>
<th>Anul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivitatea la 1 ha, q</td>
<td>2006 2007 2008 2009 2010 2011 2012</td>
</tr>
<tr>
<td>Costul unitar al produselor vândute, lei</td>
<td>77,1 38,7 75,0 56,1 63,7 85,1 72,4</td>
</tr>
<tr>
<td>Prețul mediu de vânzare al 1 q, lei</td>
<td>140,17 203,36 165,95 163,15 179,59 195,13 232,96</td>
</tr>
<tr>
<td>Profit/pierderi, lei calculat la:</td>
<td>-1 q de produse vândute, lei</td>
</tr>
<tr>
<td>- la 1 ha de suprafață de pe care s-a vândut produsele, lei</td>
<td>0,06 -3,1 8,82 -5,7 28,31 31,03 5,23</td>
</tr>
<tr>
<td>Nivelul rentabilității, %</td>
<td>0,04 1,52 5,25 3,49 15,76 15,90 2,25</td>
</tr>
</tbody>
</table>

Sursa: Calculat de autori conform formularelor specializate ale întreprinderilor agricole din Republica Moldova

Datele din tabelul 2 demonstrează o eficiență economică mai înaltă în anii 2010 și 2011, iar în anii 2007 și 2009 producția și vânzarea legumelor de câmp în întreprinderile agricole a înregistrat pierderi.

Nivelul rentabilității a fost scăzut și în anii 2006, 2008 și 2012, atingând doar 0,04-5,25%. O astfel de situație este considerată defavorabilă, întrucât randamentul suprafețelor cultivate este redus, costurile unitare ale producției finite de legume vândute sunt în creștere, iar prețul mediu de vânzare pentru 1 q nu acoperă pe deplin sau acoperă insuficient costurile unitare. Despre caracterul interdependenței dintre costul unitar și prețul mediu de vânzare ne demonstrează datele din figura 1 și tabelul 2.

Dacă raportul dintre prețul de vânzare al 1 q de legume și costul unitar este mai mare de o unitate, atunci întreprinderile agricole înregistrează profit. Cu cât raportul dintre acești doi indicatori este mai mare, cu atât nivelul rentabilității este mai înalt și există premise și condiții favorabile pentru o reproducție lârgită a legumelor.

Figura 1. Interdependența dintre costul unitar și prețul mediu de vânzare a legumelor de câmp cultivate în întreprinderile agricole din Republica Moldova

Sursa: Elaborată de autori în baza tabelelor 2.
De menționat că nici nivelul de rentabilitate de 15–16% nu este suficient pentru a promova o reproducție largă și, în condițiile existenței decalajului dintre prețurile factorilor de producție (combustibil și lubrifiante, tehnică agricolă, fertilizanți etc.) și cele de vânzare a legumelor în stare proaspătă pe diferite piețe de desfășurare, inclusiv pentru fabricile de conserve, care deseori oferă prețuri sub nivelul costului unitar și nu-și onorează obligația de achitare la timp.

Analiza trendului de modificare a indicatorilor cercetați în dinamica anilor 2007–2012 s-a efectuat după modelul ajustat al ecuației liniare (4). S-a stabilit astfel că funcția liniară:

$$ \bar{N}_t = a_b + a_1 \cdot t $$

unde: a_b și a_1 reprezintă parametrul funcției, iar t – marcarea timpului. Această relație corespunde cel mai bine tendinței obiective de evoluție a acestora, fapt confirmat atât de valoarea minimă a abaterii absolute, cât și de coeficientul de variație.

Tabelul 3. Tendința și pronosticul indicatorilor dezvoltării producției și a eficienței economice a producătorilor legumelor de câmp în întreprinderile agricole din Republica Moldova

<table>
<thead>
<tr>
<th>Indicatorul</th>
<th>Ecuatia trendului liniar $\bar{N}_t = a_b + a_1 \cdot t$</th>
<th>Nivelul mediu al indicatorilor pe anii 2006-2012</th>
<th>Nivelul ajustat al anului 2017</th>
<th>Datele anului 2017 în % față de media anilor 2006 - 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suprafața efectiv cultivată, ha</td>
<td>$\bar{N}_t = 8056,8 - 842,3t$</td>
<td>8056,8</td>
<td>1318,3</td>
<td>16</td>
</tr>
<tr>
<td>Recolta globală, q</td>
<td>$\bar{N}_t = 52009,5 - 39897,8t$</td>
<td>520095</td>
<td>2009126,6</td>
<td>39</td>
</tr>
<tr>
<td>Productivitatea legumelor de câmp, q/ha</td>
<td>$\bar{N}_t = 66,8 + 2,4t$</td>
<td>66,8</td>
<td>86,0</td>
<td>128</td>
</tr>
<tr>
<td>Costul unitar al produselor vândute, lei</td>
<td>$\bar{N}_t = 182,9 + 9,84t$</td>
<td>182,9</td>
<td>261,6</td>
<td>143</td>
</tr>
<tr>
<td>Prețul mediu de vânzare al 1 q de legume de câmp, lei</td>
<td>$\bar{N}_t = 192,4 + 5,45t$</td>
<td>192,4</td>
<td>236,0</td>
<td>123</td>
</tr>
</tbody>
</table>

Sursa: Calculat de autori conform formularelor specializate ale întreprinderilor agricole din Republica Moldova

Parametrul funcției lineare a_1, arată că, în perioada 2006-2012, indicatorii ce caracterizează dezvoltarea producției și eficiență economică a legumelor în întreprinderile agricole au o tendință anuală spre modificare în modul următor (Tab. 3):
- suprafața cultivată cu legume – diminuare cu 842, 3 ha;
- recolta globală – diminuare cu 39897,8 q;
- productivitatea legumelor de câmp – majorare cu 2,4 q/ha;
- costul unitar al producției finite vândute și prețul mediu de vânzare – majorare cu 9,84 lei și, respectiv, cu 5,45 lei;

De menționat că cercetările anterioare ale tendinței de modificare a costului unitar al legumelor, calculat în dinamica anilor 2001–2007, a demonstrat o creștere în medie cu 13,04 lei (Timofte, E. 2009).

Această comparație indică asupra tendinței de diminuare în perioada analizată a costului unitar cu 3,2 lei și constituie una din cåile principale ale sporirii eficienței economice.

În baza modelului de trend liniar s-a efectuat pronosticul dinamic al indicatorilor analizați în întreprinderile agricole ale Republicii Moldova până în anul 2017.

Prin metoda extrapolării (Tab. 3) s-a calculat pronosticul care demonstrează că dacă se va păstra și pe viitor tendința de modificare în direcțiile și mărimile obținute prin calcul, atunci indicatorii eficienței economice analizați în anul 2017, comparativ cu media anuală din 2006–2012, vor fi următorii:
- suprafața cultivată cu legume se va diminua cu 84% și va atinge 1318,3 ha;
- recolta globală se va diminua cu 61% și va constitui 200912,6 q;
- productivitatea legumelor se va majora cu 28% și va atinge nivelul de 86 q/ha;
- costul unitar al producției vândute se va majora cu 43% și va constitui 261,6 lei;
- prețul mediu de vânzare se va majora cu 23%.

Odată ce ritmul de creștere al costului unitar este mai înalt decât cel al prețului de vânzare, în anul 2017, producția legumelor va înregistra pierderi de 9,8 bani la 1 leu de cost (236 lei /261,6 lei) = 0,902x100% =90,2%, adică legumicultura va deveni nerentabilă.
CONCLUZII
Reducea suprafețelor de cultivare a legumelor cu 9,7% și a recoltei globale cu 10,3% în perioada anilor 2006–2012 în condițiile lipsei mijloacelor bănești, influențează negativ activitatea întreprinderilor agricole.
Analiza efectuată demonstrează o eficiență economică mai înaltă a legumelor de câmp numai în anii 2010 și 2011, cu un nivel de rentabilitate de 15%. În cei alți ani întreprinderile agricole au suferit pierderi sau au atins un nivel de rentabilitate de până la 5%. O asemenea situație este considerată negativă datorită faptului că productivitatea legumelor de câmp este redusă, costurile unitare ale legumelor vândute sunt în creștere, iar prețul mediu de vânzare al 1 q nu acoperă pe deplin sau acoperă insuficient costurile unitare.
Pronosticul efectuat prin metoda extrapolării, în baza modelului de trend linear, demonstrează că dacă se va păstra și pe viitor tendința de modificare în direcțiile și mărimile obținute prin calcul în baza datelor din anii 2006–2012, iar ritmul de creștere a costului unitar va fi mai înalt decât al prețului de vânzare, atunci în anul 2017 producerea de legume va deveni nerenabilă.

REFERINȚE BIBLIOGRAFICE

Data prezentării articolului: 20.04.2014
Data acceptării articolului: 25.10.2014
CZU 636.4.033 (478)

RENTABILITATEA CREȘTERII SUINELOR PENTRU CARNE ÎN REPUBLICA MOLDOVA: PARTICULARITĂȚI, REALIZĂRI ȘI PROBLEME

Grigore BALTAG, Elena BARANOVA

1Universitatea Agrară de Stat din Moldova
2Institutul Național de Cercetări Economice al Academiei de Științe a Moldovei

Abstract. This paper studies the profitability issue of raising pigs for meat in the Republic of Moldova. The research was based on the financial information from over 195 enterprises that have as their basic or complementary branch raising pigs for meat. For this study, we determined the profitability level and selected only those enterprises (140) that recorded the profitability level higher than 0. In order to process statistically the received information, the enterprises have been systematized according to 4 criteria: average daily gain, average number of feed days, average weight of a pig at slaughter, and the profitability level. Based on this information, it was determined the impact of each criterion on the profitability of pork production and it also served as a basis to establish their forecasted indicators. Our calculations have shown that together with increased levels of profitability the profit of production increases too, the production cost reduces, but there is an increased share of expenses for feed in the production cost. The cost of meat production is highly influenced by the labour remuneration costs and costs for veterinary medicines. This paper proposes to establish a profitability level of 25% as it can be considered optimal for the sustainable development of pig breeding branch in the Republic of Moldova. Also, this study could be useful for institutional decision makers form the Republic of Moldova, as well as for producers specialized in this field in order to assess the profitability level of their production.

Key words: Swine production; Multiple linear regression; Multiple correlation coefficient; Coefficient of determination; Forecasting; Profitability

Abstract. Articolul tratează problema rentabilității creșterii suinilor pentru carne în Republica Moldova. Drept bază pentru cercetare au servit informațiile privind situația financiară a 195 de întreprinderi care au ca activitate de bază sau axiliară creșterea suinilor pentru carne. Pentru acest studiu s-a determinat nivelul rentabilității producției și au fost selectate doar știri de rentabilitatea a fost mai mare decât valoarea zero. Pentru prelucrarea statistică a informațiilor într-un prim plan de criterii: variația medie zilnică, greutatea medie a unei suine la sacrificare, nivelul de rentabilitate. În baza acestei informații a fost determinat impactul fiecărui criteriu asupra rentabilității producției de carne de suine care, la rândul său, au servit ca temei pentru indicatorii prognozăi ai acestora. Calculele noastre au demonstrat că odată cu creșterea nivelului rentabilității spor este și profitul producției, costul producției se reduce și se majorază pondera cheltuielilor pentru furaje în costul producției. Costul producției de carne este influențat în mare măsură de costurile privind reîntărirea muncii și costurile medicamentelor de uz veterinar. În lucrare se propune stabilirea unui nivel al rentabilității în cantum de 25 % ce poate fi considerat optim pentru dezvoltarea durabilă a ramurii de creștere a suinelor de carne în Republica Moldova. Acest studiu poate fi utul pentru factorii de decizie instituționali din Republica Moldova, dar și producătorii din domeniul în scopul evaluării nivelului de rentabilitate a producției proprii.

Cuvinte cheie: Creșterea suinelor; Regresie liniară multiplă; Coeficientul multiplu de corelație; Coeficientul de determinare; Prognozare; Rentabilitate

INTRODUCERE

Sectorul de creștere a suinelor din Republica Moldova asigură în proporție de 90 la sută cererea pieței interne. Deși această situație este una favorabilă pentru sector din punct de vedere cantitativ, creșterea suinelor se realizează cu folosirea resurselor costisitoare, fiabilitate scăzută a echipamentelor. Acestea generează în continuare un nivel scăzut al rentabilității producției.

Problemele eficienței producției de suine (rentabilitatea ramurii) sunt insuficiente reflectate în
MATERIAL ȘI METODĂ

Informații financiare de la întreprinderile supuse studiului au fost sistematizate în funcție de nivelul rentabilității și au fost grupate după următorii indicatori: sporul mediu zilnic; numărul mediu de zile furajate; greutatea medie a unei porcine la sacrificare; nivelul rentabilității (Tab. 1).

Conform calculurilor efectuate, din cele 195 de întreprinderi analizate, doar 140 au fost considerate ca fiind rentabile. La gruparea acestor întreprinderi s-au folosit intervalele de grupă deschise prin care mărimea minimală și cea maximală a caracteristicii de grupare nu se cunoaște, aceasta modificându-se neuniform printr-o variație mare. Pentru prima grupă au fost studiate 50 de întreprinderi, pentru grupa a doua – 47 de întreprinderi, pentru grupa a treia – 43 de întreprinderi. Întreprinderile au fost clasificate conform mărimilor indicatorului de referință în descreștere.

La elaborarea acestui studiu au fost folosite metoda monografică, observarea și regresia liniară. Materialul factologic a fost colectat de la întreprinderile agricole în decursul cercetărilor în cadrul proiectului de cercetare “Determinarea mărimilor de influență a factorilor asupra modificării eficienței creșterii suinelor pentru carne în condițiile de liberalizare a pieței interne în anii 2012-2013” din cadrul Programului de Stat “Dezvoltarea competitivității și creșterea economică durabilă în contextul economiei bazate pe cunoaștere, dezvoltării și integrării regionale și europene”.

REZULTATE ȘI DISCUȚII

Sistematizând datele obținute în tabelul 1, conform celor 4 criterii, constatăm că mărimea tuturor indicatorilor (mai cu seamă cel al rentabilității) variază. Pentru gruparea întâi drept indicator de referință a servit sporul mediu zilnic al unei suine. Modulul de determinare a întreprinderilor în cauză s-a axat pe semnificația indicatorului de referință. În acest context constatăm că pentru întreprinderile din grupa nr. 1 sporul mediu zilnic este mai redus comparativ cu grupele nr. 2 și nr. 3. Observăm o majorare semnificativă a numărului mediu de zile furajate, iar greutatea unei suine la sacrificare fiind mai redusă în celelalte grupe. Chiar dacă indicatorii menționați se modifică direct proporțional cu nivelul rentabilității, acest indicator are cea mai mare valoare (12%) în comparație cu celelalte grupe. Această situație atestă disproporționalitatea corelării indicatorilor din această grupă. Cel mai sporit nivel al sporului mediu zilnic în masă vie se constată în grupa nr. 3, circa 368 grame. Un asemenea nivel depășește norma optimă, însă analizând nivelul rentabilității acestei grupe constatăm că este doar la nivelul de 10,3%. Prin urmare, sporul mediu zilnic în greutate a unei suine efectiv nu poate să asigure și un nivel al rentabilității optime.

Alt indicator ce ne atestă nivelul eficienței producției la întreprinderi este numărul mediu de zile-hrană care variază de la 289 pentru prima grupă până la 388 în grupa nr. 3. Grupa cu cel mai apropiat nivel de cerințe optimale zootehnice este cea de-a doua. Însă pentru această grupă nivelul rentabilității este redus, de doar 10,9%, ceea ce nu poate fi considerat efectiv pentru creșterea suinelor la carne. Valoarea indicilor în cea de-a doua grupă scoate în evidență ponderarea cea mai înaltă a consumurilor de furaje în totalul consumurilor – 79%. Prin urmare, numărul de zile furajate nu poate fi considerat un criteriu optim al eficientizării producției cârnii de suine.

La analiza întreprinderilor conform criteriului de greutate medie a unei suine în masă vie constatăm că grupa cu valori optime este grupa a doua. Totuși, indicatorii pentru această grupă nu au atins nivelul optim al eficienței producției, îndeosebi nivelul rentabilității economice – 9%, numărul de zile furajate fiind de 322. Neomogenitatea datelor în această grupă nu ne permite să determinăm în mod obiectiv eficiența procesului de producere a cârnii de suine.

Al patrulea criteriu de referință a fost nivelul de rentabilitate. Se constată că odată cu sporearea nivelului de rentabilitate, costul producției se reduce, dar sporește profitul la 1 q producție și ponderea consumurilor de furaje în costul producției. Rezultatele obținute arată că cea mai înaltă rentabilitate este la nivelul de 21,4%. Mărimele indicatorilor din această grupă reflectă cele mai optimale valori, ceea ce induce spre aplicabilitatea ei pentru studiul propus.
Pentru determinarea intensității legăturii factorilor cu nivelul rentabilității vom utiliza metoda regresiei și a corelației. La prima etapă de analiză vom aplica regresia liniară multiplă cu scopul identificării relației dintre costul unitar și elementele lui – costuri privind retribuția muncii, inclusiv contribuții de asigurări sociale de stat obligatorii și prime de asigurare obligatorie de asistență medicală, costurile furajelor, costurile medicamentelor de uz veterinar.

În rezultatul prelucrării matematice cu ajutorul modelului regresiei liniare multiple s-a constatat că coeficientul multiplu de corelație are o valoare de 0,894 sau 89%, ceea ce demonstrează o legătură pronunțată dintre variabila dependentă – costul 1 q producție și variabilele independente - consumuri privind retribuția muncii, consumuri de furaje, consumuri de uz veterinar.

Coeficientul de determinare este de 0,79 sau 79% și exprimă o parte a costurilor menționate la formarea costului unitar. Pornind de la expresia generală a modelului regresiei liniare multiple:

\[y = \alpha + \alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n + \varepsilon \] \hspace{1cm} (1)

determinăm ecuația de regresie liniară multiplă axată pe datele modelului obținut.

\[\bar{y} = 402,565 + 1,794 \bar{x}_1 + 0,730 \bar{x}_2 + ... + 1,160 \bar{x}_3 \] \hspace{1cm} (2)

Coeficienții de regresie ne demonstrează următoarele:

- majorarea cu 1 leu a costurilor privind retribuția muncii conduce la majorarea costului unui chintal de carne cu 1,79 lei;
- creșterea cu 1 leu a costurilor de furaje se soldează cu majorarea costului unitar pentru un chintal de carne cu 0,73 lei;
- creșterea cu 1 leu a costurilor medicamentelor de uz veterinare se produce majorare a costului unitar de carne cu 1,16 lei.

În baza rezultatului obținut în relația (2) putem afirma că nivelul costului unitar al producției de carne este influențat preponderent de costurile privind retribuția muncii și costurile medicamentelor de uz veterinare. Prin urmare, eforturile crescătorilor de suine trebuie să fie orientate spre reducerea acestor cheltuieli.

Pentru a determina influența factorilor este necesar de calculat coeficienții de elasticitate. Această sarcină se soluționează cu ajutorul următoarelor relații:

pentru costurile privind retribuția muncii:

\[E_1 = 1,794 \times \frac{333}{2813} = 0,21 \] \hspace{1cm} (3)

pentru costurile furajelor:

\[E_2 = 0,730 \times \frac{2094}{2813} = 0,54 \] \hspace{1cm} (4)

pentru costurile medicamentelor de uz veterinare:

\[E_3 = 1,160 \times \frac{243}{2813} = 0,1 \] \hspace{1cm} (5)

Mărimea coeficienților de elasticitate obținuți reflectă următoarele tendințe:

- în cazul reducerii cu 1% a costurilor privind retribuția muncii se reduce și costul unitar al cărnii, dar numai cu 0,21%;
- mișcarea în quantum de 1% a costurilor furajelor va reduce costul unitar al producției de carne cu 0,54%;
- diminuarea în proporție de 1% a costurilor medicamentelor de uz veterinare conduce la reducerea costului unitar al cărnii cu 0,1%.

Analizând gradul de corelație dintre variabilele independente și variabila dependență constatăm că cea mai puternică legătură există în relația \(y = x_1 \times x_2 \) și \(y = x_1 \times x_3 \). Acest fapt este confirmat și de calculele de mai sus. Relațiile factoriale \(x_1 x_2 \) și \(x_1 x_3 \) demonstrează o legătură indirectă. Aceasta înseamnă că odată cu majorarea unuia dintre factori, celălalt descrește în aceeași măsură. De exemplu, concomitent cu majorarea costurilor la furaje, se vor mișcă costurile privind retribuirea muncii. Însă mărimea costurilor totale va rămâne nemodificată. Această tendință trebuie să servească drept un argument economic...
Tabelul 1. Dependența eficienței economice a creșterii suinelor la carne de nivelul concentrației ramurii

<table>
<thead>
<tr>
<th>Indicatorul</th>
<th>Întreprinderi grupate după sporul mediului zilnic</th>
<th>Întreprinderi grupate după numărul mediu de zile furajate</th>
<th>Întreprinderi grupate după greutatea medie a unei porcine la sacrificare</th>
<th>Întreprinderi grupate după nivelul de rentabilitate</th>
<th>Semnificația medie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Numărul de întreprinderi</td>
<td>grupa 1 50</td>
<td>grupa 2 47</td>
<td>grupa 3 43</td>
<td>grupa 1 50</td>
<td>grupa 2 47</td>
</tr>
<tr>
<td>2. Sporul mediului zilnic, g</td>
<td>252</td>
<td>309</td>
<td>368</td>
<td>314</td>
<td>320</td>
</tr>
<tr>
<td>3. Numărul mediului de zile furajate</td>
<td>357</td>
<td>312</td>
<td>337</td>
<td>289</td>
<td>337</td>
</tr>
<tr>
<td>4. Greutatea medie a unei porcine la sacrificare, kg</td>
<td>89</td>
<td>96,5</td>
<td>125,2</td>
<td>91</td>
<td>112</td>
</tr>
<tr>
<td>5. Costul 1 q producției, lei</td>
<td>2663</td>
<td>2770</td>
<td>2711</td>
<td>2858</td>
<td>2651</td>
</tr>
<tr>
<td>6. Pondera furajelor în costul producției, %</td>
<td>78</td>
<td>76</td>
<td>75</td>
<td>72</td>
<td>79</td>
</tr>
<tr>
<td>7. Pondera medicamentelor de uz veterinarn în costul producției, %</td>
<td>8 7 8 9 7 8 8 7 5 9 7 6 7,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Profitul brut în calcul la 1 q, lei</td>
<td>307</td>
<td>246</td>
<td>265</td>
<td>191</td>
<td>276</td>
</tr>
<tr>
<td>9. Rentabilitatea 1 q de producție, %</td>
<td>12</td>
<td>9,5</td>
<td>10,3</td>
<td>7,1</td>
<td>10,9</td>
</tr>
</tbody>
</table>
concludent pentru producătorii de carne de suine cu scopul majorării costurilor la furajie la 1 q producție.
În continuare vom analiza nivelul rentabilității, aplicând același model al regresiei liniare multiple, conform rezultatelor obținute în urma prelucrării statisticomatematice a informației selectate.

Drept variabilă dependentă a servit nivelul de rentabilitate, iar ca variabile independente – profitul la 1 q de producție și costul a 1 q de producție de carne.

Rezultatele obținute atestă faptul că coeficientul multiplu de corelație este egal cu 0,99. Prin urmare, există o legătură semnificativă între nivelul rentabilității la 1 q de producție și variabilele dependente. Coeficientul de determinare multiplu constituie 0,99, ceea ce ne demonstrează că abaterea nivelului rentabilității la 1 q de producție de carne este influențată de variabilele dependente în mărimie de 99 %.

Aceasta confirmă alegerea statistică corectă a variabilei dependente în raport cu variabilele independente.

Ecuatia regresiei multiple a acestui model poate fi prezentată prin relația:

\[y = 11,333 + 0,038x_1 - 0,00413x_2 \]
(6)

Rezultatele obținute cu ajutorul acestei relații (6) demonstrează că odată cu sporirea cu 1 leu a profitului brut calculat la 1 q producție, nivelul rentabilității se majoră cu 1 %. Reducerea cu 1 leu a costului unui chintal de producție va conduce la reducerea nivelului rentabilității cu 0,0043 %. Conform datelor din tabelul 1 putem afirma că relația dintre nivelul rentabilității și variabilele dependent (profitul brut și costul producție) este semnificativă. Însă corelația dintre costul producției și nivelul rentabilității este indirectă. Aceasta înseamnă că odată cu reducerea costului unitar al cĂrnii, nivelul rentabilității se reduce. Înlocuind valorile obținute în relația (6) obținem următoarea relație:

\[y = 11,333 + (0,038 \times 2741) - (0,00413 \times 2713,4) \]
(7)

Rezultatul obținut se compară cu cel determinat real pe totalitatea de întreprinderi:

10,6H=10,9

Calculele de mai sus demonstrează corectitudinea indicatorilor determinați în studiul dat. Această constatare ne permite de a prognoza în continuare nivelul rentabilității competitive, având în vedere cerințele actuale și tendințele regionale și mondiale în activitatea de creștere a suinelor pentru carne.

Nivelul rentabilității medii obținute pe eșantionul de 140 de întreprinderi constituipe 10,6 %. Un asemenea nivel al rentabilității, evident, nu este suficient pentru asigurarea unei activități de producere suficiente în domeniul creșterii suinelor pentru carne. Acest nivel nu contribuie la acumularea valorii adăugate la întreprinderi, nu crează premise pentru o reproducție lărgită și nu este competitiv în raport cu producția importată.

Date fiind tendințele actuale ale ramurii de creștere a suinelor de carne, cerințele tehnologice, de comercializare și particularitățile de producere, în baza calculurilor prezentate se propune modelul economic de obținere a rentabilității de 25 %. Un asemenea nivel ar asigura o competitivitate sporită a producției de carne de suine autohtone în comparație cu producția importată, ar permite producătorilor de a-și lărgi activitatea prin atragerea unor credite bancare în scopul îmbunătățirii utilizării tehnologic.

În tabelul de mai jos prezintăm mărimile prognozate pentru indicatorii de determinare a nivelului rentabilității de 25 %.

Tabelul 2. Indicatorii prognozați ai nivelului rentabilității producției cărnii de suine pentru întreprinderile din Republica Moldova pentru anul 2014

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Semnificația</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sporul mediu zilnic, g</td>
<td>320</td>
</tr>
<tr>
<td>2. Numărul mediu de zile furajate</td>
<td>337</td>
</tr>
<tr>
<td>3. Greutatea medie a unei porcine la sacrificare, kg</td>
<td>108</td>
</tr>
<tr>
<td>4. Costul 1 q de producție, lei</td>
<td>2444</td>
</tr>
<tr>
<td>5. Pondera costurilor la furaje în costul producției, %</td>
<td>80</td>
</tr>
<tr>
<td>6. Pondera costurilor medicamentelor de uz veterinar în costul producției, %</td>
<td>5</td>
</tr>
<tr>
<td>7. Profitul brut în calcul la 1 q, lei</td>
<td>620</td>
</tr>
<tr>
<td>8. Rentabilitatea, %</td>
<td>25</td>
</tr>
</tbody>
</table>

Datele prezentate în tabel sunt relevante pentru toate tipurile de gospodării autohtone orientate spre obținerea unei rentabilități competitive la creșterea suinelor de carne.
CONCLUZII

Analiza în baza nivelului de rentabilitate atestă că odată cu sporirea nivelului rentabilității se reduce costul producției, sporește profitul în raport cu 1 q de producție și se majorează ponderea cheltuielor pentru furaje în costul producției.

Nivelul costului unui chintal de producție este influențat preponderent de costurile privind retribuția muncii și costurile medicamentelor de uz veterinar.

Nivelul rentabilității producției în cuantum de 25 % poate fi considerat optim pentru dezvoltarea durabilă a ramurii de creștere a suinelor de carne în Republica Moldova și rezonabil pentru majoritatea întreprinderilor din sectorul agrar.

REFERINȚE BIBLIOGRAFICE

Data prezentării articolului: 17.08.2014
Data acceptării articolului: 05.11.2014